
zExpander: a Key-Value Cache with both
High Performance and Fewer Misses

Xingbo Wu, Li Zhang∗, Yandong Wang∗, Yufei Ren∗, Michel Hack∗, Song Jiang
Wayne State University, ∗IBM T. J. Watson Research Center

{wuxb,sjiang}@wayne.edu, {zhangli,yandong,yren,hack}@us.ibm.com

Abstract
While key-value (KV) cache, such as memcached, ded-
icates a large volume of expensive memory to holding
performance-critical data, it is important to improve mem-
ory efficiency, or to reduce cache miss ratio without adding
more memory. As we find that optimizing replacement al-
gorithms is of limited effect for this purpose, a promising
approach is to use a compact data organization and data
compression to increase effective cache size. However, this
approach has the risk of degrading the cache’s performance
due to additional computation cost. A common perception
is that a high-performance KV cache is not compatible with
use of data compacting techniques.

In this paper, we show that, by leveraging highly skewed
data access pattern common in real-world KV cache work-
loads, we can both reduce miss ratio through improved
memory efficiency and maintain high performance for a KV
cache. Specifically, we design and implement a KV cache
system, named zExpander, which dynamically partitions
the cache into two sub-caches. One serves frequently ac-
cessed data for high performance, and the other compacts
data and metadata for high memory efficiency to reduce
misses. Experiments show that zExpander can increase
memcached’s effective cache size by up to 2× and reduce
miss ratio by up to 46%. When integrated with a cache
of a higher performance, its advantages remain. For exam-
ple, with 24 threads on a YCSB workload zExpander can
achieve throughput of 32 million RPS with 36% of its cache
misses removed.

1. Introduction
As an indispensable component of data center infrastruc-
tures, key-value cache, such as memcached [6], provides fast

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

EuroSys ’16 April 18–21, 2016, London, United Kingdom
Copyright c⃝ 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2901318.2901332

access to data that can be slow to re-fetch or re-compute in
the back-end storage or database systems. Presented in the
form of key-value pairs, the data is cached in the memory
of a cluster of servers, and is accessed with a simple inter-
face, such as GET(key) for reading data, SET(key,value)
for writing data, and DEL(key) for removing data. With
its rapidly increasing importance on entire storage and/or
database systems’ service quality, the cache’s performance
and its improvement have received extensive studies. These
optimization efforts include reducing network stack cost,
alleviating contention with concurrent accesses, reducing
memory accesses, and optimizing memory management [22,
28, 30, 37, 40]. Some of the efforts leverage new hard-
ware features, including direct cache access [25, 28] and
RDMA [20, 27, 34, 38], or specialized hardware, such as
GPU and FPGA [14, 23, 41], to speed up KV caches.

While a KV cache’s performance, either in request la-
tency or in throughput, is important, the significance of re-
ducing its misses cannot be downplayed. In many usage sce-
narios, each miss represents a request to a back-end database
system. In a busy KV cache system these misses, which may
represent a small miss ratio, can impose significant work-
load on the database system. As reported in a study on Face-
book’s memcached workloads, eviction misses produced by
one server can turn into over 120 million requests sent to
the database per day, though they represent only a few per-
centage points of the server’s miss ratio [40]. In other words,
seemingly minor reduction of miss ratio can lead to signifi-
cant workload reduction on the database system. As the miss
penalty can be as high as a few milliseconds or even sec-
onds [36], miss-ratio reduction is also important to reducing
effective request response time. Significant efforts are de-
manded to reduce it.

Without adding DRAM to the server, there are two
approaches to reduce misses, and unfortunately both ap-
proaches could potentially compromise the cache’s perfor-
mance. One approach is to apply advanced cache replace-
ment algorithms. Over years a large number of replacement
algorithms have been proposed, including LRU and ad-
vanced algorithms aiming to improve it, such as LIRS [26],
ARC [33], and MQ [42]. However, in KV cache systems,

only LRU or its approximations are adopted for their low
cost. As examples, memcached uses LRU, and MemC3
chooses a lower-cost LRU-approximation scheme (similar to
CLOCK) for higher space efficiency and better concurrency
support. The advanced algorithms expected to produce lower
miss ratios are often (much) more expensive, requiring more
space to track access history for data that have been evicted.
As we will show in Section 2, their limited improvements on
miss ratio are less interesting when the cost is considered.

Another approach is to use data compression technique
to improve memory efficiency. It increases effective cache
size and reduces miss ratio. However, adoption of this tech-
nique would require compression for SET requests and de-
compression for GET requests. For a KV cache system de-
signed for high performance this additional cost seems to be
unbearable. However, in the next section, we will show that
KV cache’s accesses are highly skewed and a majority of
its GET requests are for a relatively small portion of the en-
tire data set. This access pattern allows us to decouple the
effort on providing high performance from that on reducing
cache misses, and to achieve both goals (high performance
and low miss ratio) simultaneously. The method is to parti-
tion the cache into two sub-caches, each managed by a dif-
ferent scheme and dedicated to achieving one of the goals.
The first sub-cache is named N-zone, whose data are those
frequently accessed and will not be compressed. Because of
highly skewed access pattern, N-zone can have a relatively
small space to serve a majority of requests with high perfor-
mance. This sub-cache can be managed by a state-of-the-art
KV cache scheme designed for high performance. The sec-
ond sub-cache is named Z-zone, which is expected to hold a
(much) larger portion of the cache space but serve a smaller
portion of requests. Therefore, with small impact on the KV
cache’s performance Z-zone prioritizes its effort on memory
efficiency to reduce misses.

In this paper we propose zExpander, a KV cache system
applying this method in the management of a KV cache. In
the following sections we will show that increasing cache
size is an effective way to reduce misses. In the mean-
time, there are several challenges to address in the design
of zExpander:

• First, in real-world KV workloads [9, 35, 40], most val-
ues in KV items are very small. Individually compressing
them cannot produce substantial space saving.

• Second, metadata for indexing KV items can consume a
substantial portion of memory when the items are small.
A compact data organization is required to reduce the
cost.

• Third, the space allocation between N-zone and Z-zone
has to be dynamically adjusted to ensure the majority of
accesses can be processed in N-zone to maintain perfor-
mance and to ensure that Z-zone’s space is effectively
utilized to reduce misses.

(a) ETC (b) APP

(c) USR (d) YCSB

Figure 1: CDF curves for percentage of accesses associated with
certain percentage of the most frequently accessed KV items.

2. Motivation of Increasing Effective Cache
Size and Using Batched Data Compression

In this section we use workloads collected at Facebook’s
production memcached system and synthetic workload of
representative access pattern to show that (1) accesses to KV
cache are highly skewed, (2) increasing cache size is a nec-
essary and effective means to reduce misses, and (3) batched
data compression can achieve a much higher compression
ratio than individually compressing KV items, facilitating
the effort of increasing cache size.

2.1 Long-tail distribution and Impact of Larger Cache
Size

To understand access pattern of representative KV cache
workloads, we select three Facebook’s memcached traces
(USR, APP, and ETC) [13].1 We also use Yahoo’s YCSB
benchmark suite [18] to generate a trace to access KV items.
The trace covers a data set of about 128 GB and the popu-
larity of keys follows a Zipfian distribution with a skewness
parameter of 0.99, which is YCSB’s default Zipfian parame-
ter. The Zipfian distribution has been widely assumed on the
KV cache’s workloads in prior works on KV caches [20, 22,
28, 30, 31].

Figure 1 plots the access CDF (Cumulative Distribution
Function) curves of the four workloads, or the percentage
of accesses associated with most frequently accessed KV
items. As shown, all workloads exhibit distributions with
long tails, and a relatively small cache can cover a major-
ity of accesses. For ETC, APP, USR, and YCSB workloads,
the 3.6%, 6.9%, 17.0%, and 5.9% most frequently accessed
items receive 80% of total accesses, respectively. This obser-

1 In the paper for characterizing Facebook’s memcached workload [13],
there are five traces collected and analyzed. We choose three of them for
this investigation. Trace VAR is not selected because it is write-dominated
and reads only a few distinct keys. Trace SYS has a very small data set, and
a cache of a few Gigabytes can produce almost a 100% hit ratio.

(a) ETC (b) APP

(c) USR (d) YCSB

Figure 2: Miss ratios of the KV cache workloads with different
replacement algorithms. In the simulation, cache space used for
metadata tracking access history, such as pointers in their linked
lists, is not counted in the reported cache size.

vation is echoed by miss ratio curves with different replace-
ment algorithms, including LRU, LIRS, and ARC, shown in
Figure 2. This suggests that a relatively small cache holding
these hot items can achieve low miss ratios.2 Let us define
such a small cache that can accommodate the set of most
frequently accessed KV items serving 80% of a workload’s
total accesses (see Figure 1) as the workload’s base cache,
and its size as the workload’s base cache size. As long as the
base cache can efficiently serve its requests, the cache’s per-
formance is mostly warranted. However, this cannot lead to
the conclusion that a small cache is sufficient.

Though miss ratios with a cache larger than a workload’s
base cache are low, a busy KV cache can still produce a very
large number of misses, or equivalently heavy load on the
database system. A small improvement on miss ratio can
make a substantial difference on the system’s performance.
It is necessary to make major efforts to keep removing the
misses, including using optimized replacement algorithms
and/or increasing cache size. To estimate the contribution
of locality-aware replacement algorithms on miss ratio im-
provement, we apply a hypothetical replacement algorithm,
named LRU-X, in which the base cache uses LRU, and data
out of the base cache but still in the memory are managed by
the random replacement policy.

To clearly observe impacts of replacement algorithm and
cache size on miss ratio, we list miss count with base cache
size and the LRU-X replacement, which is considered as a
reference value, as well as percentage of the misses that are
removed with use of larger cache and/or optimized replace-
ment algorithms in Table 1. We have several interesting ob-
servations. First, with a cache larger, or even several times
larger, than the base cache, increasing cache size can still

2 A SET request is always considered as a hit on the corresponding KV item
in the calculation of the miss ratio.

Trace Base
Size Algo. Cache Size (×Base Size)

×1.0 ×1.5 ×2.0 ×2.5 ×3.0

ETC 9.5
(GB)

LRU-X 968M -24.15% -34.65% -40.69% -45.16%
LRU -0.00% -30.99% -43.42% -49.49% -52.76%
LIRS -2.55% -30.68% -43.53% -50.35% -54.19%
ARC -8.50% -28.26% -42.01% -49.28% -53.40%

APP 12.3
(GB)

LRU-X 2,273M -16.18% -25.22% -31.95% -37,32%
LRU -0.00% -20.46% -31.56% -39.19% -44.91%
LIRS -16.70% -32.32% -41.16% -46.64% -51.18%
ARC -7.27% -23.96% -33.28% -39.74% -44.09%

USR 9.2
(GB)

LRU-X 17,417M -33.62% -53.93% -67.81% -77.64%
LRU -0.00% -38.60% -61.61% -75.58% -84.39%
LIRS -15.83% -47.47% -65.74% -77.42% -85.97%
ARC -10.81% -42.89% -63.97% -76.21% -84.38%

YCSB 7.7
(GB)

LRU-X 4,905M -3.78% -9.09% -15.92% -23.53%
LRU -0.00% -10.65% -18.22% -24.30% -29.24%
LIRS -15.51% -24.44% -30.75% -35.77% -39.86%
ARC -18.29% -26.77% -32.69% -37.37% -41.13%

Table 1: Reference miss counts with base cache size and LRU-
X replacement (such as 968 millions of misses for ETC at 9.5 GB
(×1) and LRU-X), and percentages of the misses that are removed
with use of larger cache (such as 1.5× or 2.0× of base cache size)
and/or other replacement algorithms (LRU, LIRS, and ARC).

substantially reduce misses. For example, for every 50% in-
crease of the base cache size, the miss count is reduced by
8% to 31% for ETC, and by 30% to 38% for USR. Sec-
ond, the locality-aware replacement algorithms moderately
perform better than LRU-X, a scheme that simply selects
random items in the long tail for replacement. This seems
to suggest that for accesses in the long tail of very weak lo-
cality the room for further improvement by more carefully
exploiting locality is limited. In addition, advanced algo-
rithms, such as LIRS and ARC, need to spend substantial
cache space to track accesses of KV items that have been
evicted out of the cache, which essentially reduces effective
cache size and offsets their advantages on miss ratio. Third,
the benefit from increasing cache size is consistent across
various replacement algorithms and workloads. In particu-
lar, this benefit does not disappear or even become smaller
with advanced replacement algorithms producing lower miss
ratio. While data compression can increase effective cache
size, this observation suggests that it is a potentially effec-
tive technique for substantially reducing misses.

2.2 Batched Data Compression
A convenient approach to increasing KV-cache’s effective
size is to individually compress KV items in the cache. This
approach can be effective for items with large values. How-
ever, small values are common in KV cache workloads.
As reported in the study on Facebook’s memcached work-
loads [13], except for one workload (ETC) 90% of cache
space is occupied by values of under 500 B. In ETC, requests
with values smaller than 16 bytes account for 40% of the to-
tal requests. Another workload USR virtually has only one
value size, which is 2 bytes. In another example, a study on

Container Size: Individual 256 B 512 B 1 KB 2 KB 4 KB
Tweets 0.99 1.10 1.21 1.30 1.34 1.41
Places 1.28 1.28 1.45 1.60 1.70 1.77

Table 2: Average compression ratios with compression applied on
containers of different sizes. “Individual” is for compression of
individual values of KV items. “Tweets” and “Places” represent
the data sets for Twitter’s tweets and location records, respectively.
The ratio is between sizes of an uncompressed data object and its
corresponding compressed object.

Twitter’s workloads finds that average value size of tweets is
only 92 B [17].

To understand how compression ratio is affected by value
size, we place values into containers of various sizes and
apply LZ4 [1], a high-speed compression algorithm, on the
containers. We test two value sets, one is a collection of
about 10 million tweets that have been collected in Twit-
ter’s service from September 2009 to January 2010 to study
geolocation of twittering [17]. Average value size of the
tweets is 92 B. Another value set contains records in a for-
mat named Places defined by Twitter to describe geographic
locations with coordinates. We fill fields of the records with
random data, and then encode the records using Google’s
Protocol Buffers, which is a widely used method for serial-
izing structured data [7]. The average record size is 100.9 B.

Table 2 shows average compression ratios of the two data
sets when each data items are compressed individually or
collectively in a container of various sizes. It can be seen
that compression with a larger set of data is more effective
on reducing data size. The larger the container is, the better
compression ratio is. For tweets, individual compression
does not result in any reduction of their sizes. With such
an observation, users do not have the incentive to compress
their data beforehand. Therefore, we increase effective cache
size by compacting small items into containers for batched
compression.

3. Design of zExpander
zExpander is a KV cache designed for high performance
and reduced misses, each objective is achieved by a ded-
icated cache partition (named as N-zone and Z-zone, re-
spectively). While N-zone can be managed by any state-of-
the-art high-performance KV cache scheme, we need to de-
sign a scheme for managing Z-zone for high memory- and
access-efficiency, and a policy to dynamically adjust cache
space allocation between the two zones to ensure that the
KV-cache’s performance is not (substantially) compromised
with workloads of changing access patterns.

In zExpander, a new request is first processed at its
N-zone. For a GET request, if it hits in the N-zone, the
result can be immediately returned. Otherwise, the request is
passed to the Z-zone. A SET request is always immediately
admitted by the N-zone. Only when an item is evicted out of
the N-zone, it is then admitted into the Z-zone. A DELETE

0***
1***

00** 01**

0***

00** 01** 10** 11**

1***

Figure 3: KV items in a Z-zone are compacted into blocks, which
are organized into a binary trie. Only a leaf block (shaded) stores
KV items (in the left), and grows two child blocks when it is
overloaded (in the right).

is performed simultaneously at both zones. While an N-
zone manager is almost a plug-in of any existing KV cache
system, which is responsible for communicating with clients
and serving frequent accesses, we focus on the design of Z-
zone.

3.1 Data Organization of the Z-zone
As suggested in Section 2.2, KV items are placed into con-
tainers, which are named blocks, for effective compression3.
Accordingly, indices are built on these blocks, rather than on
individual KV items, to reduce use of pointers for space ef-
ficiency. In the design there are two objectives. One is that
a block should be always well loaded for space efficiency.
The other is that time to reach a block for a requested item
should be minimized for CPU efficiency.

To this end, we organize the blocks into a binary trie,
or a binary prefix tree. As shown in Figure 3, each tree
node is labeled with a binary prefix. Each KV item’s key
is also a binary string. An item is stored in a leaf node
whose label matches its key’s prefix. In other words, internal
nodes do not contain data. When a block is full and a new
item needs to be inserted into the block, it grows two child
nodes, and each of its items is moved to one of the new
nodes according to next bit of its key’s prefix. Accordingly
the corresponding node becomes an internal tree node, the
space held by the block is de-allocated. Without a physical
presence to consume memory, the node is associated with a
NULL pointer to facilitate key searching in the tree, which
will be explained soon.

We choose binary tree, rather than regular tree allowing
for more children from a node, so that new nodes (blocks)
are more likely to be well loaded (at least half full). However,
to this end we also need to make sure storage load on these
two nodes is well balanced. In addition, the entire binary tree
has to be well balanced to avoid excessively long paths lead-
ing to some leaf nodes, or to avoid long access time for walk-
ing from the root to a leaf node on the trie. To this end, we
apply a hash function, such as MurmurHash [12], on keys,
and then use the hashed keys to locate the corresponding KV

3 For KV items larger than half of a block’s capacity, each of the items is
compressed and stored individually, and a pointer recording its address is
stored in the block where it is supposed to stay. As zExpander is designed
for workloads of small items, we expect such large items are rare in the
cache.

0 1 2 3
null null null null

4 5 6 7
null null null

8 9 1011
null

12131415
null

16171819
null null null null

20212223
null null

7
8

9
11

12
13

14
21

22

(a) Two-level pointer array

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22

Internal node Leaf node Ghost node

(b) Complete binary tree storing KV items

Figure 4: A trie, where KV items are stored at its leaf nodes, is enhanced with ghost leaf nodes to form a complete binary tree (b). Nodes on
the tree are accessed through two-level pointer arrays (a). Note that spaces for internal and ghost nodes in (b) and pointer segments, such as
[0,1,2,3] and [16,17,18,19] in (a), are virtual, or not physically allocated, to save memory. Furthermore, the links between parent and children
nodes in (b) do not have physical presence.

items in the trie. In this way, every block has an equal prob-
ability to receive KV items, and the chance of unbalanced
data storage in the tree structure is minimized.

A conventional approach to locate an item in a tree is to
chase pointers starting from the root node along a determin-
istic path leading to a leaf node according to the item’s key.
However, on a binary tree, the path can be substantially long.
Due to processor cache misses during the pointer chasing,
the access time can be unnecessarily high. For higher access
efficiency, we add minimal number of ghost leaf nodes to
the tree to make it a complete binary tree. In a complete bi-
nary tree, “every level, except possibly the last, is completely
filled, and all nodes in the last level are as far left as possi-
ble.” [5]. Each node is pointed by a pointer. A ghost node
does not have any physical presence, and is pointed by (or
associated with) a NULL pointer. We linearize these point-
ers into an array ordered from the top level to the bottom
level, and in each level from the left to the right. Now a com-
plete binary tree is formed. From the last pointer’s position
in the array, we can directly compute the index of the last
level (leaf or ghost) node corresponding to a given prefix of
a hashed key. From this last level node, we can trace up the
tree to identify the leaf node (with a non-NULL pointer) that
possibly stores the item. This approach avoids traversing a
(long) list of pointers from the root. In practice, to identify
the non-NULL pointer, we only need to inspect a few (usu-
ally fewer than three) consecutive pointers up along the path
starting from the last level node.

As shown in Figure 4, to avoid recording many pointers
to the ghost nodes, or NULL pointers, we evenly partition
the array into segments of fixed size, each with 128 4-byte-
pointers. This array is then considered as the second level
of pointers, and we maintain a so-called first-level array of
pointers, each pointing to a segment in the second level. If
all pointers in a segment are NULLs, the segment is not

allocated to save memory space, and a NULL pointer is set
in the corresponding slot of the first-level array.

3.2 Data Access and Replacement in the Z-zone
As KV items are compacted and compressed as a whole
in a block with a default capacity of 2 KB, accessing the
KV items involves decompression and/or compression of
the block. Writing a new item into a block always leads
to its reconstruction, including decompressing items in the
block, re-compressing the existing items and the new item,
allocating new memory space(s) to store the new block(s),
and freeing the space held by the original block. Reading an
item from a block requires a decompression of the block and
searching the decompressed data for the item. For a quick
search in the block, items are arranged in a block according
to a hashed key order [29], and a small index consisting of
offsets of up to eight items evenly spaced in the block is
recorded so that only a few KV items have to be checked
for a look-up in the block. In addition, to avoid unnecessary
decompression operations on a block when looking for non-
existing items, each block is associated with a Bloom filter,
named as Content Filter, to remember items in the block.
Expecting a block contains roughly 20 (for block size of
2 KB and small item size of 100 B) or fewer KV items, the
Bloom filter is of 16-byte long. For each GET or DELETE

request the Content Filter must be first checked to determine
if the block needs to be accessed.

Unlike memcached who uses slab class to manage its
own space (de)allocation for KV items, zExpander relies
on the general-purpose memory allocator (malloc), usually
provided by Glibc, for the allocation/de-allocation in the
Z-zone. In this way, there is no internal fragmentation in
the zone. Meanwhile, because the allocation size (a block)
is large, space efficiency is less of a concern [37].

When the Z-zone has reached its allocated size, we need
to determine an item for replacement. For this purpose,
memcached organizes KV items in linked lists to find the
least-recently-used (LRU) item. However, for a cache stor-
ing small items, the space overhead for so many pointers
can be too high. In addition, zExpander cannot track ac-
cess history of the blocks to make its replacement decision.
As the block where a KV item is placed is determined by
the hashed key, each key has an equal probability to be in-
serted into any block, and each block can usually contain a
mix of popular and unpopular items. To address the issue
we need to exploit access locality of items within individual
blocks. This is much like what the replacement policy for a
set-associative processor cache does, except that zExpander
needs to determine an item in a block, rather than a cache
line in a cache set, for replacement. To efficiently track ac-
cess history of items in a block, we associate a Bloom filter,
named Access Filter, to each block to record recently ac-
cessed items. Like a Content Filter, an Access Filter is also
of 16-byte long. Whenever an item is accessed for GET, its
key is recorded in the corresponding Access Filter.

In the replacement policy, all blocks, or the trie’s leaf
nodes containing KV items, are linked into a circular list.
zExpander sweeps around the list. At each block it stops at,
it tries to select victim items for replacement before moving
to the next block. The victim items are selected by randomly
choosing half of the items that are not recorded in the Access
Filter. If all items are recorded in the filter, it skips the block.
The Access Filter is cleared before zExpander moves to the
next block, so that recent accesses can be recorded in the
filter before this block is examined again.

3.3 Limiting Accesses in the Z-zone
While accessing KV items in the Z-zone is more expensive
than that in the N-zone, especially for serving write requests,
zExpander needs to control (relative) number of accesses
on the zone. There are two potential issues that may cause a
Z-zone to receive too many accesses. One issue is that the
corresponding N-zone is not sufficiently large and causes
actively accessed KV items to be spilled into the Z-zone.
The other issue is frequent movements of items into and out
of the Z-zone due to use of two-zone caching in zExpander.

3.3.1 Adaptive Cache Space Allocation
To address the first issue, we adaptively adjust cache space
allocation between the two zones so that most requests can
be processed at the N-zone and, if possible, the Z-zone has
a substantially large size to help with the system’s memory
efficiency. An N-zone has its target size, and the gap between
its actual size and the target size suggests an action to expand
or shrink the N-zone. Accordingly, a Z-zone has an action
status, which can be expand, shrink, or stay, which indicates
size change is not necessary. zExpander periodically checks
the fraction of requests serviced at the N-zone in the current
time window (one minute by default). If it is non-trivially

smaller than a target threshold (90% by default) and the
current action status is not expand, zExpander increases the
zone’s target size by 3% of the cache space. Otherwise, if it is
non-trivially larger than the target threshold and the current
action is not shrink, the zone’s target size is reduced by 3%
of the cache space. We assume that the N-zone is managed
by a KV cache system that supports resizing memory to a
given size. Details on its implementation in zExpander’s
prototype is described in Section 4.

When new items are added into the N-zone, zExpander
will usually evict not-actively-accessed items into the Z-
zone. Accordingly, to expand N-zone to its target size,
zExpander simply keeps these items from being evicted.
To shrink the N-zone, we leave a thread in the background
and activate it for moving not-actively-accessed items into
the Z-zone when the processors are not fully utilized.

In the calculation of requests serviced at a zone, we do not
consider requests that do not require block (de)compression.
These include missed GET requests and DELETE requests on
non-existing items. Both types of the requests can be identi-
fied by Content Filters and the requests can be efficiently ser-
viced. On the other hand, we consider items that are evicted
from the N-zone into the Z-zone as requests serviced at the
Z-zone. In this way, only expensive operations are counted
and their impact on the system’s performance can be effec-
tively capped.

3.3.2 Minimizing Write Operations at Z-zone
To address the second issue, we need to identify unneces-
sary item movements and remove them. Due to existence
of access locality, a KV item can be relatively either an ac-
tively accessed (hot) one or an inactively accessed (cold)
one in a certain time period. A hot item’s home zone is N-
zone and a cold one’s home zone is Z-zone. When access
pattern changes and a cold (hot) item turns hot (cold), mov-
ing the item from Z-zone (N-zone) to N-zone (Z-zone) is
necessary. In the meantime, there are two scenarios where
the movements are not necessary.

One scenario is that when an item is read from the Z-zone
when a GET request is serviced, we need to know if it should
be removed from the zone and inserted into the N-zone. To
do this effectively, we need to make sure the item has turned
from cold to hot. Otherwise, it would quickly return from the
N-zone and back to the Z-zone. An item’s status, hot or cold,
depends on its relative locality strength compared to that of
items in the other zone. Therefore, the key to the answer on
whether the item currently in the Z-zone has turned hot when
it is read is to quantitatively compare locality strength of this
item to that of any item currently in the N-zone. To this end,
we need to measure an N-zone’s locality strength, which is
defined as the weakest strength of all of its cached items. It
is desired to have an efficient approach that does not require
modification of KV cache code managing the N-zone. To
this end, we treat the zone as a black box and periodically
issue a special SET request, named as Marker request, into

the N-zone. Each Marker request has a unique key4 and will
never be re-accessed. We then observe how long it will take
for the item written by the Marker request to be evicted out
of the zone. This duration represents the Z-zone’s locality
strength, and is considered as its locality benchmark. The
shorter the benchmark, the stronger the Z-zone’s locality
strength. To be more effective, the benchmark we adopt is a
weighted average of three most recent benchmarks. When an
item in the Z-zone is accessed for the first time, zExpander
records its access time without moving it into the N-zone.
When it is re-accessed, the time gap, or re-use time, from
its last access is calculated. If the re-use time is smaller than
the N-zone’s locality benchmark, the item is moved to the
N-zone. Otherwise, it remains in the Z-zone. In this way, the
item being moved into the N-zone is likely to be actively
re-accessed and stay there, and the item remaining in the
Z-zone is less likely to be re-accessed soon. As we only
need to identify the items that are best qualified to be moved
from Z-zone into N-zone, for each block we only maintain
two records for its recent accesses, each containing a hashed
key (4 bytes) and a access time (4 bytes). They are of only
16 bytes, less than 1% of each block’s size.

The other scenario is that a SET request is received and a
new KV item is first written into the N-zone. If at this time
the old version of the item (of the same key) is in the Z-zone
(by checking the Content Filter of the corresponding block),
zExpander needs to decide if the version should immedi-
ately be removed from the Z-zone. For memory efficiency,
we should keep an item from being doubly cached. However,
an immediate removal may be followed soon with an evic-
tion of the item’s new version from the N-zone and insertion
into the Z-zone if the item is a cold one. To avoid the un-
necessary early removal, we postpone it for a time period at
least equal to the N-zone’s benchmark. If the item is evicted
before or around when the time period expires, removal and
write operations are merged into one at the Z-zone. Other-
wise, the removal will be combined with the space reclama-
tion in the Z-zone. When Z-zone’s replacement algorithm
runs, it will first execute the pending removal operations, if
any, before looking for LRU items in the blocks for replace-
ment.

4. Evaluation
zExpander has been implemented and extensively evalu-
ated with different workloads and system configurations. In
the evaluation, we will answer three questions. First, can
zExpander substantially reduce misses with little or lim-
ited loss of performance? Second, if zExpander’s perfor-
mance loss is minimal with using memcached to manage its
N-zone, is this still true with a high-performance KV cache
of very-low-cost networking, such as RDMA, and increas-
ingly large number of threads? Third, can zExpander effec-
tively respond to change of access pattern and opportunis-

4 It contains special characters so it cannot appear in real workloads.

tically retain its advantage on miss reduction with its adap-
tive space allocation? In addition, we will also demonstrate
why individually compressing KV items in off-the-shelf KV
caches is not sufficient to achieve desirable miss reduction.

4.1 Implementation of Two zExpander Prototypes
We have built two prototypes, a memcached-based zExpander
and a high-performance-KV-cache-based zExpander.

In the first one, the N-zone is managed by memcached

(Ver. 1.4.24), which is also responsible for communication
with clients. However, memcached does not support on-line
change of cache size, a capability required by zExpander

and we attempted to add into memcached. The challenge
is that memcached maintains multiple slab classes, each for
storing KV items at a certain size range. To add or remove
cache space, we would have to decide which classes’ alloca-
tions need to be increased or decreased and by how much.
A decision on this has implication on what KV items are
cached or replaced as well as on the cache’s miss ratio [24].
To keep authenticity of memcached’s behaviors and perfor-
mance in the evaluation, we choose not to include the mech-
anism for adaptively adjusting cache space allocation in this
prototype. Instead, we manually determine the target sizes
for N-zone and Z-zone and statically configure them. In
this prototype, we add about 85 lines of code to integrate
memcached into zExpander, mainly for catching events,
such as item evictions, GET misses, and item writes, so that
corresponding operations at the Z-zone can be triggered.

Because items in different classes are managed in differ-
ent LRU queues in memcached according to their sizes, we
maintain a locality strength benchmark for each class, and
use them to decide item movements depending on item size.

It is known that memcached’s performance is seriously
constrained by its networking cost [30, 35, 40]. Its use of
linked list in the hash table and use of the LRU list can lead
to substantial processor cache misses, and limits the KV-
cache’s performance. While these overheads can potentially
overshadow the cost of Z-zone operations, we build a high-
performance zExpander prototype to fully expose the Z-
zone operation cost. In this prototype, network processing
is removed by issuing requests at the user level of the server
where the prototype KV cache runs. It also adopts optimistic
Cuckoo hashing and CLOCK-based replacement suggested
in MemC3 [22] to further improve the efficiency of N-zone
operations.

4.2 Experiment Setup
In this evaluation, we replay the four traces (three Face-
book’s memcached traces and one Zipfian trace generated by
Yahoo’s YCSB) used in Section 2 as the prototyped system’s
workloads. While the traces do not contain actual values, we
use the data sets about Tweeter’s location records to emulate
the values (see Section 2.2). The value size is distributed in
the range from 2 B to 327 B with an average of 100.9 B. We
use LZ4 compression algorithm [1]. In the YCSB trace the

(a) ETC (b) APP (c) USR (d) YCSB

Figure 5: Miss ratios of systems using memcached with different workloads. One thread is employed for serving requests.

(a) ETC (b) APP (c) USR (d) YCSB

Figure 6: Size of (uncompressed) KV items cached in the systems using memcached with different workloads at the time when a trace has
been replayed.

ratio of GET and SET requests are 95% vs. 5% if not other-
wise specified. In the trace replaying, we use first 1/5 of a
trace to warm up the cache before collecting measurements.

The server running the prototypes has two Xeon E5-2680
v3 CPU, each having twelve cores with hyper-threading dis-
abled and 30 MB last-level cache. The server is equipped
with 128 GB (8×16GB) DDR4 memory. For the memcached-
based zExpander, we use another server of the same con-
figuration to generate and send requests over 10Gb Ethernet.

Each of the Facebook traces is a sequence of serialized
requests. Concurrency relationship among requests is lost in
the trace collection. To keep authenticity of the trace we do
not artificially break it into multiple concurrent segments for
replaying. Accordingly for these workloads, only one thread
is employed to serve requests at the server.

In the below for brevity we name memcached-based
zExpander as M-zExpander, the high-performance-KV-
cache-based zExpander as H-zExpander. We also have
H-Cache by removing the Z-zone from H-zExpander and
running the high-performance KV-cache exclusively.

4.3 Results for memcached-based KV Caches
Figure 5 shows miss ratios for the four workloads (ETC,
APP, USR, and YCSB) running on memcached and
M-zExpander with various cache sizes. Cache sizes for dif-
ferent workloads are chosen according to their respective

data set sizes. As shown, M-zExpander can substantially re-
duce miss ratio, by up to 46%. The actual reduction depends
not only on the increase of effective size but also on the
workload’s demand on cache space in the increased cache
size range. Figure 6 shows the size of KV items cached in
the systems (in their uncompressed form) corresponding to
each of the experiments in Figure 5. As an example, Figure 5
shows that USR achieves the largest miss ratio reduction
(from 37% to 46%) with zExpander. However, its increase
of amount of cached KV items with zExpander is moder-
ate (from 42% to 63%) compared to the increases with other
workloads. As suggested in Figure 2 and in Table 1, USR’s
miss ratio has the largest reduction in the range of cache size
from 20 GB to 50 GB.5 Another observation in Figure 5 is
that the miss ratio reduction is pretty consistent across the
selected cache sizes, suggesting that zExpander can be ef-
fective in a considerably large range of cache capacity. With
zExpander, cache can be sized economically without com-
promising miss ratio. For example, for APP, a 15-GB cache
with zExpander can have a miss ratio lower that a 20-GB
cache with memcached.

5 Note that cache sizes indicated in Figure 2 and in Table 1 include only
(uncompressed) KV items, or those shown in Figure 6 as “Size of KV
Items”.

Memcached Memcached
(w/ Compression)

zExpander
(Z-Zone only)

0

10

20

30

40

50

60

70

80

S
iz

e
 (

G
B

)

Uncompressed
KV Items

Others

Metadata

KV Items
in the Cache

Figure 7: Comparison of memory usages of a 60-GB KV cache
managed by memcached, memcached whose KV items are individ-
ually compressed, and zExpander that has only Z-zone. The usage
includes spaces used for KV items, metadata, and others (e.g., al-
location fragmentations). It also shows amount of KV items in a
cache should they be not compressed.

To obtain insights on how zExpander allows substan-
tially more KV items to be cached without adding DRAM,
we first analyze the memory usage of memcached. The left
two bars of Figure 7 show the usage for the YCSB work-
load at a 60-GB cache (corresponding to the right two bars
of Figure 6d). As shown, in a memcached cache of 60 GB,
only 56% of it (34 GB) is actually used to store KV items,
and about 32% is for metadata, including three pointers to
each item for hash table and its LRU replacement policy,
and other cache management metadata specific to each indi-
vidual item. The remaining cache space is mainly consumed
by internal fragmentation in its slab allocation. zExpander
relies on its Z-zone to increase effective cache size, or store
more KV items. So we assume a zExpander with only Z-
zone to cache the YCSB KV items. As shown in the right two
bars in Figure 7, in the zExpander-managed cache, 88% of
its space is used to store (compressed) KV items. Compared
to its uncompressed form, the size of cached KV items is in-
creased by 126% (34 GB vs. 77 GB). Because of its use of
compact data structure (organizing blocks in the binary trie),
the metadata holds only 3.3% of the cache space. Even the
allocation fragmentation is reduced with the use of Glibc’s
memory allocator. This is made possible by (de)allocating
larger blocks, rather than individual KV items.

To understand how a memcached that simply compresses
items individually would help with memory efficiency, we
write compressed KV items into the cache. The result is
shown in the middle two bars of Figure 7. Unfortunately,
with this compression only 13.5% more KV items are
cached, and metadata cannot be reduced at all without use
of batched compression and compact data structure.

Figure 8 shows throughput of the KV caches with var-
ious workloads and cache sizes corresponding to each of
the experiments in Figure 5. As we explained, only one
thread is employed to obtain the results. For the YCSB
workload, we increase the number of threads (up to 24),

each exclusively on one core, and show the throughput with
different cache sizes in Figure 9. As seen, in the experi-
ments M-zExpander’s throughput is within 4% of that of
memcached, though it serves about 10% of requests at its
Z-zone. A major reason is that memcached has a serious
bottleneck on its networking processing [30, 35, 40]. Its
throughput is less than 100 K RPS (requests per second) with
one thread, and less than 700 K RPS with 24 threads. The
throughput is even much lower than that of zExpander that
serves all requests at its Z-zone, which is around 1.3 M RPS
with one thread and around 18.1 M RPS with 24 threads, if
networking is excluded. To fully expose the potential per-
formance impact we compare the high-performance cache
without networking involved (H-Cache), and zExpander

with H-Cache to manage its N-zone (H-zExpander).

4.4 Results for High-Performance KV Caches
Figure 10 shows throughput of H-Cache and H-zExpander

using YCSB workload with different mixes of GET and SET

requests. As seen, the peak throughput can reach as high
as 33 M RPS with the all-GET workload. For each work-
load, H-Cache’s throughput keeps increasing with number
of threads until the number arrives at about 15. Beyond
this, it reaches a plateau and even slightly falls because
lock contention intensifies. Before the number of threads
becomes high (around 20), H-zExpander’s throughput is
about 10%–15% lower than that of H-Cache. This is under-
standable as around 10% of requests are served at the Z-zone
with a higher cost. However, when more threads are added,
H-Cache’s throughput increase becomes slower or even
stops. H-zExpander’s throughput keeps its increase longer
and eventually (almost) catches up with H-Cache’s through-
put. With the same number of threads, the lock contention is
less severe in H-zExpander than that in H-Cache as some
of the threads are diverted to perform more expensive op-
erations at Z-zone. In other words, H-zExpander leverages
some of the CPU cycles waiting for locks to meet the de-
mand from Z-zone operations. In this way, for H-zExpander
operations at its Z-zone does not compromise its N-zone’s
performance. Another scenario where H-zExpander almost
does not suffer any performance loss is when the system
does not run at its peak capacity and has spare CPU cycles.
Because most KV cache systems are over provisioned, this
scenario is common.

With more SETs, both systems’ throughput reduces, as
SETs intensifies H-Cache’s lock contention and they are
(much) more expensive in H-zExpander’s Z-zone by in-
volving compression. However, the relative throughput trend
between the two systems stays.

Figure 11 compares the systems’ performance for the
YCSB workload with 24 threads using a different metric–
request processing time, which is the turnaround time of a
request in the system and will be part of the latency observed
by clients in a networked setting. With a smaller percentile,
H-Cache has smaller processing time. However, at high per-

(a) ETC (b) APP (c) USR (d) YCSB

Figure 8: Throughput of systems using memcached with different workloads. One thread is employed for serving requests.

(a) Cache Size 40 GB (b) Cache Size 50 GB (c) Cache Size 60 GB

Figure 9: Throughput of systems using memcached with the YCSB workload and different number of threads. Caches of three different
sizes are tested.

(a) 100% GET, 0% SET (b) 95% GET, 5% SET (c) 50% GET, 50% SET (d) 5% GET, 95% SET

Figure 10: Throughput of systems using the high-performance cache with the YCSB workload and different number of threads. The cache
size is 60 GB. Different mixes of GET and SET requests are tested.

centiles, the H-zExpander’s latency becomes smaller. For
example, at the 99% percentile, the times for H-zExpander
and H-Cache are 4.0µs and 4.6µs, respectively (see Fig-
ure 11b). Intensive lock contention has been notoriously
known to cause long execution delay [15, 16]. H-zExpander
accidentally ameliorates the contention at the N-zone by re-
directing some requests to the Z-zone.

Figure 12 shows the miss rate, or number of misses per
second in each of the experiments shown in Figure 10. The
reductions of misses are significant, often by 30% to 40%
and by up to 1.48 million requests per second. Though
H-zExpander has a lower throughput (by 10% to 15%), its
reduction on throughput does not overshadow its improve-

ment on miss rate. Altogether H-zExpander’s improvement
on miss reduction is still impressive.

4.5 Effectiveness of Using Bloom Filter to Reduce
Decompressions

To access a key in zExpander the binary trie for the Z-
zone can only locate a block that possibly contains the key.
To know if the key actually appears in the block, one has
to perform expensive block decompression operation before
the key can be searched. For reading non-existing keys, or
GET misses, zExpander employs a Bloom filter (Content
Filter) for each block to avoid unnecessary decompression
operations. To quantitatively assess efficacy of the filter, we
run a GET-only workload with different percentages of non-

(a) Latency of GET (100% GET, 0%
SET)

(b) Latency of GET (95% GET, 5%
SET)

(c) Latency of SET (95% GET, 5%
SET)

Figure 11: CDF curves of request processing time in the systems using the high-performance cache with the YCSB workload and different
number of threads. The cache size is 60 GB. Different mixes of GET and SET requests are tested.

(a) 100% GET, 0% SET (b) 95% GET, 5% SET (c) 50% GET, 50% SET (d) 5% GET, 95% SET

Figure 12: Miss rate, or misses produced per second by the systems using the high-performance cache with the YCSB workload and different
number of threads. The cache size is 60 GB. Different mixes of GET and SET requests are tested.

(a) 50% Miss (b) 75% Miss (c) 100% Miss

Figure 13: Throughput of H-zExpander that uses or does not use Bloom filters

existing keys, or different miss ratios. Figure 13 shows the
throughput with the YCSB workloads at different thread
count when the filters are used or not.

As shown in the figure, using the filters can substantially
increase the cache’s throughput. Our measurements show
that the filters’ false positive ratio remains at around 5%, or
around 95% of misses do not come with block depressions.
The throughput increase correlates with the miss ratio when
the thread count is small. For example, with 50%, 75%, and
100% miss ratios, the increases are 39%, 53%, and 64% with
five threads, respectively. However, when more threads are
used, a higher miss ratio does not lead to a higher through-
put increase. For example, with 20 threads the increases are

27%, 26%, and 20% at 50%, 75%, and 100% miss ratios, re-
spectively. With a large number of threads and correspond-
ingly high throughput, the impact of decompression on per-
formance becomes less significant and other costs, such as
lock contention, take a higher weight. In this case the benefit
of using the filters does not increase with miss ratio.

Another observation on Figure 13 is that higher miss ratio
leads to lower throughput, even when the Bloom filters are
used. With a highly skewed access pattern, most request hits
are served at the N-zone, thus are much more efficient than
misses, which are always served at the Z-zone. Even though
most decompressions can be avoided for misses, a higher
miss ratio still degrades the throughput.

(a) Performance (b) Miss Ratio

Figure 14: Throughput and miss ratio of zExpander using the
high-performance cache with the YCSB workload, 60 GB cache,
and 24 threads. Different target percentage thresholds for accesses
at N-zone are tested.

Figure 15: Allocation changes (from uniform to Zipfian patterns)
between N-zone and Z-zone in response to change of access pat-
tern. H-zExpander with 24 threads and a mix of 95%-GET/5%-SET
is used. The cache size is 60 GB. The space allocation to the Z-zone
is shown as the shaded area.

4.6 Impact of Space Allocation between N-zone and
Z-zone

How to allocate cache space between N-zone and Z-zone
is an important issue. With a too-large allocation to the
N-zone, effort on miss reduction would be compromised.
With a too-large Z-zone allocation, the cache’s performance
could be unduly affected. While the allocation has to change
in respond to changes of access pattern, a parameter of
zExpander about this is target percentage threshold, or the
percentage of requests that should be processed at the N-
zone. Figure 14 shows throughput and miss ratio of a 60 GB
cache with the YCSB workload. As expected, the larger the
threshold, the higher the throughput and the higher the miss
ratio. As long as this threshold is sufficiently large (but not
too close to 100%), its impact on throughput and miss rate is
moderate. In the H-zExpander prototype, we choose 90%
as the threshold, which provides high throughput and decent
miss ratio reduction.

With a selected target threshold, zExpander automati-
cally adapts to its space allocation to access pattern change.

Figure 16: Miss ratio and throughput corresponding to the exper-
iment results shown in Figure 15

To observe the adaptation and its performance implication,
we write about 24 GB KV items to the N-zone and the rest
to fill the Z-zone of a 60 GB cache. We then send requests
with a mix of 95% GET and 5% SET to the cache, initially
with a uniform access key distribution, then (at around 480th
second) change access pattern to Zipfian, or the access dis-
tribution assumed in our YCSB workload. Figure 15 shows
the amount of data cached in the N-zone and that in the Z-
zone. Figure 16 shows the miss ratio and throughput cor-
responding to allocations in Figure 15. With the uniform ac-
cess pattern, N-zone has its maximum allocation, and almost
all items are uncompressed. The cache stores only about
40 GB items. In the meantime, it has high throughput (29 M
RPS) and high miss ratio (about 37%). After changing to
the Zipfian access pattern, it takes about 900 seconds for the
space re-allocation to be completed. After the re-allocation,
N-zone has about 25 GB and most of the space goes to the Z-
zone. With compression at Z-zone, the size of cached items
increases to about 65 GB. The throughput is only moderately
reduced (from 29 M RPS to 24 M RPS), and miss ratio is re-
duced to only 5.2%.

5. Related Work
zExpander is a KV cache system that leverages highly-
screwed access pattern to simultaneously achieve high per-
formance and low miss ratio. There have been many efforts
reported in the literature related to various components of
this work, including those on memory compression, mem-
ory allocation, effective indexing of KV items, and high per-
formance KV caches.

Compression in main memory. As memory is fast but ex-
pensive, Compression Cache [19], ZSwap [11] and zram [10]
use some memory space as swapping area, in addition to
that on the slow disk, and compress data in the area. Be-
cause memory pages in the space are compressed, the rel-
atively small in-memory virtual area can be presented as a
(much) larger swap space. With in-memory data compres-
sion, zExpander follows the same idea. However, it has to
address a difficult challenge. As data for compression on
swap area is in the page unit, which is usually 4 KB and

large enough to support an effective compression, KV items
are of sizes distributed in a large range and often small (as
small as a few bytes). Even though some KV in-memory
stores, such as Redis [8], recommend users to individually
compress KV items, the benefit is highly dependent on item
sizes. zExpander is immune to this constraint by aggregat-
ing items into larger blocks before applying compression.
Another issue with individual compression is that metadata
cannot be ’compressed’. With a large number of small items
in a cache, the metadata can be significant. By aggregating
items, zExpander can also substantially reduce metadata.
While small KV items are common in KV-cache workloads,
zExpander’s contribution is substantial.

Indexing data structure. When metadata, or data for in-
dexing KV items for their locations, can be a significant
space overhead with small items, KV stores usually use
compact data structure with sparse indices, such as LSM-
tree [2, 29, 39]. As KV items of a KV store are mostly on
the disks, the design goal is to minimize I/O operations, in-
stead of processor cache misses, in searching for an item.
In contrast, zExpander takes effort to reduce the metadata’s
memory size and the cache misses by using batched item
storage, balanced binary trie, and address calculation.

Fragmentation in memory allocation. Another source of
memory overhead is memory allocation. Dynamic memory
allocators, such as malloc/free in Glibc and its alterna-
tives, are convenient choices and widely used [3, 4, 21].
However, for frequent allocation and deallocation of a large
number of small items, space overhead due to fragmenta-
tion can be very high. While small items are popular in KV
caches, this issue has to be addressed. There are two possi-
ble approaches. One is that adopted in memcached, which
obtains large fixed size memory chunks (2-MB slabs) from
the system and performs memory allocation by itself. Slab
allocation has been a very successful strategy for manag-
ing data items of fixed sizes, such as inode and dentry

of file systems. However, KV items are of all different sizes,
which makes substantial internal fragmentation in the slabs,
as revealed in our experiments. Another approach is to use
recently proposed log-structured memory allocation [37].
However, it requires constantly moving data objects, impos-
ing high CPU overhead, especially when the memory space
is fully occupied, which is almost always the case with a KV
cache. By aggregating KV items into blocks and requesting
memory in blocks, zExpander can use the Glibc allocator
without concern of its space efficiency.

KV store performance. Recent research on KV cache is
mostly on its performance, or on how to increase its peak
throughput [28, 30, 32]. Their efforts include optimizing
data structure to reduce processor cache misses, leverag-
ing advanced hardware features, such as RDMA and Direct
Cache Access, for fast networking, and efficient concurrency
control. zExpander is complementary to the optimizations,

as N-zone can be managed by any high-performance KV
cache management to take advantage of the improvements.

Replacement strategy. KV cache systems usually employ
light-weight replacement algorithms to identify and keep an
active set of KV items in the cache, so that requests can be
quickly processed. To this end, even the efficient LRU algo-
rithm is replaced with a CLOCK algorithm in MemC3 [22]
to remove two pointers for each KV items and associated
operations on them in LRU. MICA [30] even uses a replace-
ment policy similar to that for the set associative cache to
minimize the cache footprint in each lookup. With this tech-
nical trend on replacement algorithms in KV caches, there
is little room to accommodate more intelligent but more ex-
pensive replacement algorithms to reduce miss ratio. In con-
trast, zExpander takes a different approach to reduce miss
ratio, which is to increase effective cache size. The replace-
ment policy used in zExpander’s Z-zone is also of very low
cost by only identifying victim items for replacement within
individual blocks.

6. Conclusion
In this paper we propose zExpander, a KV cache with
both high performance and substantially reduced misses at
the same time. This is made possible by uniquely lever-
aging an observation common in KV-cache’s workloads –
accesses of the cache are highly skewed with a long tail.
To enable an efficient system, we introduce a number of
techniques, including batched compression, efficient index-
ing and data location on a complete binary trie, adaptive
space allocation, and minimized data migration. More inter-
estingly, zExpander can integrate any KV designs for high
performance into its cache management with small code in-
strumentation. As an example, in one of the two prototypes,
we add fewer than 100 lines of code into memcached to build
the M-zExpander system. Porting more existing KV cache
systems to zExpander is in our future work plan. We have
extensively evaluated zExpander and demonstrated impres-
sive results on both performance and miss reduction.

7. Acknowledgments
We are grateful to the paper’s shepherd Dr. Donald Koss-
mann and anonymous reviewers who helped to improve the
paper’s quality. We thank Facebook Inc. and Eitan Fracht-
enberg for their donating servers and sharing Memcached
traces, which allowed one of the authors (Song Jiang) to con-
duct extensive experiments for the evaluation. This work was
supported by US National Science Foundation under CA-
REER CCF 0845711, CNS 1217948, and CNS 1527076.

References
[1] LZ4: Extremely Fast Compression algorithm. https://

code.google.com/p/lz4/.

[2] LevelDB: A Fast and Lightweight Key/Value Database
Library by Google. https://code.google.com/p/

leveldb/.

[3] A Memory Allocator. http://g.oswego.edu/dl/html/

malloc.html.

[4] TCMalloc : Thread-Caching Malloc. http:

//goog-perftools.sourceforge.net/doc/tcmalloc.

html.

[5] complete binary tree. http://xlinux.nist.gov/dads/

HTML/completeBinaryTree.html.

[6] Memcached: A distributed memory object caching system.
http://memcached.org/.

[7] Protocol Buffers. https://en.wikipedia.org/wiki/

Protocol_Buffers.

[8] How we cut down memory usage
by 82 http://labs.octivi.com/

how-we-cut-down-memory-usage-by-82/.

[9] How much text versus metadata is in a tweet? http://goo.

gl/EBFIFs.

[10] zram: Compressed RAM based block devices.
https://www.kernel.org/doc/Documentation/

blockdev/zram.txt.

[11] The zswap compressed swap cache. https://lwn.net/

Articles/537422/.

[12] A. Appleby. MurmurHash. https://sites.google.com/

site/murmurhash/.

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-scale Key-
value Store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems, SIGMET-
RICS ’12, pages 53–64, New York, NY, USA, 2012. ACM.

[14] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z. István.
Achieving 10Gbps Line-rate Key-value Stores with FPGAs.
In Presented as part of the 5th USENIX Workshop on Hot
Topics in Cloud Computing, Berkeley, CA, 2013. USENIX.

[15] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang. Corey: An Operating System for Many Cores.
In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, pages 43–57,
Berkeley, CA, USA, 2008. USENIX Association.

[16] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An Analysis of
Linux Scalability to Many Cores. In Proceedings of the
9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–8, Berkeley, CA, USA,
2010. USENIX Association.

[17] Z. Cheng, J. Caverlee, and K. Lee. You Are Where You Tweet:
A Content-based Approach to Geo-locating Twitter Users. In
Proceedings of the 19th ACM International Conference on

Information and Knowledge Management, CIKM ’10, pages
759–768, New York, NY, USA, 2010. ACM.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud Comput-
ing, SoCC ’10, pages 143–154, New York, NY, USA, 2010.
ACM.

[19] F. Douglis. The Compression Cache: Using On-line Compres-
sion to Extend Physical Memory. In USENIX Winter, pages
519–529, 1993.

[20] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.
FaRM: Fast Remote Memory. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Im-
plementation, NSDI’14, pages 401–414, Berkeley, CA, USA,
2014. USENIX Association.

[21] J. Evans. jemalloc. http://www.canonware.com/

jemalloc/.

[22] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Com-
pact and Concurrent MemCache with Dumber Caching and
Smarter Hashing. In Proceedings of the 10th USENIX Con-
ference on Networked Systems Design and Implementation,
nsdi’13, pages 371–384, Berkeley, CA, USA, 2013. USENIX
Association.

[23] T. H. Hetherington, M. O’Connor, and T. M. Aamodt. Mem-
cachedGPU: Scaling-up Scale-out Key-value Stores. In Pro-
ceedings of the Sixth ACM Symposium on Cloud Computing,
SoCC ’15, pages 43–57, New York, NY, USA, 2015. ACM.

[24] X. Hu, X. Wang, Y. Li, L. Zhou, Y. Luo, C. Ding, S. Jiang,
and Z. Wang. LAMA: Optimized Locality-aware Memory
Allocation for Key-value Cache. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15), pages 57–69, Santa
Clara, CA, July 2015. USENIX Association.

[25] R. Huggahalli, R. Iyer, and S. Tetrick. Direct Cache Access
for High Bandwidth Network I/O. In Proceedings of the 32Nd
Annual International Symposium on Computer Architecture,
ISCA ’05, pages 50–59, Washington, DC, USA, 2005. IEEE
Computer Society.

[26] S. Jiang and X. Zhang. LIRS: An Efficient Low Inter-
reference Recency Set Replacement Policy to Improve Buffer
Cache Performance. In Proceedings of the 2002 ACM SIG-
METRICS International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’02, pages
31–42, New York, NY, USA, 2002. ACM.

[27] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA
Efficiently for Key-value Services. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14, pages 295–
306, New York, NY, USA, 2014. ACM.

[28] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky,
D. G. Andersen, O. Seongil, S. Lee, and P. Dubey. Architect-
ing to Achieve a Billion Requests Per Second Throughput on
a Single Key-value Store Server Platform. In Proceedings of
the 42Nd Annual International Symposium on Computer Ar-
chitecture, ISCA ’15, pages 476–488, New York, NY, USA,
2015. ACM.

[29] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT:
A Memory-efficient, High-performance Key-value Store. In

https://code.google.com/p/lz4/
https://code.google.com/p/lz4/
https://code.google.com/p/leveldb/
https://code.google.com/p/leveldb/
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://xlinux.nist.gov/dads/HTML/completeBinaryTree.html
http://xlinux.nist.gov/dads/HTML/completeBinaryTree.html
 http://memcached.org/
https://en.wikipedia.org/wiki/Protocol_Buffers
https://en.wikipedia.org/wiki/Protocol_Buffers
http://labs.octivi.com/how-we-cut-down-memory-usage-by-82/
http://labs.octivi.com/how-we-cut-down-memory-usage-by-82/
http://goo.gl/EBFIFs
http://goo.gl/EBFIFs
https://www.kernel.org/doc/Documentation/blockdev/zram.txt
https://www.kernel.org/doc/Documentation/blockdev/zram.txt
https://lwn.net/Articles/537422/
https://lwn.net/Articles/537422/
https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/
http://www.canonware.com/jemalloc/
http://www.canonware.com/jemalloc/

Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles, SOSP ’11, pages 1–13, New York,
NY, USA, 2011. ACM.

[30] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A
Holistic Approach to Fast In-memory Key-value Storage. In
Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation, NSDI’14, pages 429–
444, Berkeley, CA, USA, 2014. USENIX Association.

[31] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F.
Wenisch. Thin Servers with Smart Pipes: Designing SoC
Accelerators for Memcached. SIGARCH Comput. Archit.
News, 41(3):36–47, June 2013.

[32] Y. Mao, E. Kohler, and R. T. Morris. Cache Craftiness for
Fast Multicore Key-value Storage. In Proceedings of the 7th
ACM European Conference on Computer Systems, EuroSys
’12, pages 183–196, New York, NY, USA, 2012. ACM.

[33] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low
Overhead Replacement Cache. In Proceedings of the 2Nd
USENIX Conference on File and Storage Technologies, FAST
’03, pages 115–130, Berkeley, CA, USA, 2003. USENIX As-
sociation.

[34] C. Mitchell, Y. Geng, and J. Li. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In Pre-
sented as part of the 2013 USENIX Annual Technical Confer-
ence (USENIX ATC 13), pages 103–114, San Jose, CA, 2013.
USENIX.

[35] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling Mem-
cache at Facebook. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 13), pages 385–398, Lombard, IL, 2013. USENIX.

[36] J. Ou, M. Patton, M. D. Moore, X. Yuehai Xu, and S. Jiang.
A Penalty Aware Memory Allocation Scheme for Key-value
Cache. In Proceedings of the 44th International Conference
on Parallel Processing, ICPP’15, 2015.

[37] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-structured
Memory for DRAM-based Storage. In Proceedings of the
12th USENIX Conference on File and Storage Technologies,
FAST’14, pages 1–16, Berkeley, CA, USA, 2014. USENIX
Association.

[38] Y. Wang, L. Zhang, J. Tan, M. Li, Y. Gao, X. Guerin, X. Meng,
and S. Meng. HydraDB: A Resilient RDMA-driven Key-value
Middleware for In-memory Cluster Computing. In Proceed-
ings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’15, pages
22:1–22:11, New York, NY, USA, 2015. ACM.

[39] X. Wu, Y. Xu, Z. Shao, and S. Jiang. LSM-trie: An LSM-tree-
based Ultra-Large Key-Value Store for Small Data. In 2015
USENIX Annual Technical Conference, NSDI’14. USENIX
Association, 2015.

[40] Y. Xu, E. Frachtenberg, and S. Jiang. Building a high-
performance key-value cache as an energy-efficient appliance.
Perform. Eval., 79:24–37, 2014.

[41] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang.
Mega-KV: A Case for GPUs to Maximize the Throughput of

In-memory Key-value Stores. Proc. VLDB Endow., 8(11):
1226–1237, July 2015.

[42] Y. Zhou, Z. Chen, and K. Li. Second-Level Buffer Cache
Management. IEEE Trans. Parallel Distrib. Syst., 15(6):505–
519, June 2004.

	Introduction
	Motivation of Increasing Effective Cache Size and Using Batched Data Compression
	Long-tail distribution and Impact of Larger Cache Size
	Batched Data Compression

	Design of zExpander
	Data Organization of the Z-zone
	Data Access and Replacement in the Z-zone
	Limiting Accesses in the Z-zone
	Adaptive Cache Space Allocation
	Minimizing Write Operations at Z-zone

	Evaluation
	Implementation of Two zExpander Prototypes
	Experiment Setup
	Results for memcached-based KV Caches
	Results for High-Performance KV Caches
	Effectiveness of Using Bloom Filter to Reduce Decompressions
	Impact of Space Allocation between N-zone and Z-zone

	Related Work
	Conclusion
	Acknowledgments

