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ABSTRACT
With the ever increasing DRAM capacity in commodity computers,
applications tend to store large amount of data in main memory
for fast access. Accordingly, efficient traversal of index structures
to locate requested data becomes crucial to their performance. The
index data structures grow so large that only a fraction of them can
be cached in the CPU cache. The CPU cache can leverage access
locality to keep the most frequently used part of an index in it for
fast access. However, the traversal on the index to a target data dur-
ing a search for a data item can result in significant false temporal
and spatial localities, which make CPU cache space substantially
underutilized. In this paper we show that even for highly skewed
accesses the index traversal incurs excessive cache misses leading
to suboptimal data access performance. To address the issue, we
introduce Search Lookaside Buffer (SLB) to selectively cache only
the search results, instead of the index itself. SLB can be easily in-
tegrated with any index data structure to increase utilization of
the limited CPU cache resource and improve throughput of search
requests on a large data set. We integrate SLB with various index
data structures and applications. Experiments show that SLB can
improve throughput of the index data structures by up to an order
of magnitude. Experiments with real-world key-value traces also
show up to 73% throughput improvement on a hash table.
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• Information systems→ Key-value stores; Point lookups; •
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1 INTRODUCTION
In-memory computing has become popular and important due to
applications’ demands on high performance and availability of in-
creasingly large memory. More and more large-scale applications
store their data sets in main memory to provide high-performance
services, including in-memory databases (e.g., H-Store [28], Mem-
SQL [39], and SQLite [45]), in-memory NoSQL stores and caches
(e.g., Redis [43], MongoDB [41], and Memcached [38]), and large
forwarding and routing tables used in software-defined and con-
tent-centric networks [4, 13, 57]. In the meantime, these applica-
tions rely on index data structures, such as hash table and B+-
tree, to organize data items according to their keys and to facil-
itate search of requested items. Because the index always has to
be traversed to locate a requested data item in a data set, the ef-
ficiency of the index traversal is critical. Even if the data item is
small and requires only one memory access, the index traversal
may add a number of memory accesses leading to significantly
reduced performance. For example, a recent study on modern in-
memory databases shows that “hash index (i.e., hash table) accesses
are the most significant single source of runtime overhead, consti-
tuting 14–94% of total query execution time.” [30]. A conventional
wisdom to addressing the issue is to keep the index in the CPU
cache to minimize index search time.

However, it is a challenge for the caching approach to be effec-
tive on reduction of index access time. The memory demand of
an index (indices) can be very large. As reported, “running TPC-C
on H-Store, a state-of-the-art in-memory DBMS, the index consumes
around 55% of the total memory.” [55]. The study on Facebook’s use
of Memcached with their five workloads finds that Memcached’s
hash table, including the pointers on the linked lists for resolving
hash collision and the pointers for tracking access locality for LRU
replacement, accounts for about 20–40% of the memory space [2].
With a main memory of 128GB or even larger holding a big data
set, the applications’ index size can be tens of gigabytes. While a
CPU cache is of only tens of megabytes, search for a data item
with a particular key in the index would incur a number of cache
misses and DRAM accesses, unless there is strong locality in the
index access and the locality can be well exploited.

Indeed, requests for data items usually exhibit strong locality.
For example, as reported in the Facebook’s Memcached workload
study, “All workloads exhibit the expected long-tail distributions, with
a small percentage of keys appearing in most of the requests. . . ”. For
one particular workload (ETC), 50% of the keys occur in only 1%
of all requests [2]. Such locality is also found in the workloads of
database [30] and network forwarding table [57]. Each of the re-
quested data items is usually associated with an entry in the index
data structure. The entry corresponds to the same key as the one in
the request. Example index data structures include hash table and
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Figure 1: False temporal locality in a hash table. False tem-
poral locality is generated on a path to a target entry in the
hash table.
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Figure 2: False temporal locality in a B+-tree. False temporal
locality is generated on a path to a target entry in a B+-tree.

B+-tree. The requested data item can be either directly included in
the entry, such as a switch port number in a router’s forwarding
table [57], or pointed to by a pointer in the entry, such as user-ac-
count status information indexed by the hash table in Facebook’s
Memcached system [2]. In both cases, to access the requested data,
onemust search the indexwith a given key to reach the index entry,
named target entry. The goal of the search is to obtain the search
result in the target entry. The result can be the requested data item
itself or a pointer pointing to the data item. Strong access local-
ity of requested data is translated to strong locality in the access
of corresponding target entries. However, this locality is compro-
mised when it is exploited in the current practice of index caching
for accelerating the search.

First, the temporal locality is compromised with index search.
To reach a target index entry, one has to walk on the index and visit
intermediate entries. For a hot (or frequently accessed) target en-
try, the intermediate entries on the path leading to it also become
hot from the perspective of the CPU cache. This is illustrated in
Figures 1 and 2 for the hash table and B+-tree, respectively. How-
ever, access locality exhibited on the intermediate entries is artifi-
cial and does not represent applications’ true access pattern about
requested data. Accordingly, we name this locality false temporal
locality. Such locality can increase demand on cache space bymany
times leading to high cache miss ratio.

Second, CPU accesses memory and manages its cache space in
the unit of cache lines (usually of 64 bytes). The search result in a

Hash(Key)

Key	Value

Cache Lines

Figure 3: False spatial locality in a hash table. False spatial
locality is generated in the cache lines containing interme-
diate entries and target entry on a path in the hash table.

target entry can be much smaller than a cache line (e.g., a 8-byte
pointer vs. 64-byte cache line). In an index search spatial locality is
often weak or even does not exist, especially when keys are hashed
to determine their positions in the index. Because CPU cache space
must be managed in the unit of cache line, (probably cold) index
entries in the same cache line as those on the path to a target entry
can be fetched into the cache as if there were spatial locality. We
name the locality false spatial locality, as illustrated in Figure 3
for the hash table. This false locality unnecessarily inflates cache
demand, pollutes the cache, and reduces cache hit ratio.

To remove the aforementioned false localities and improve effi-
ciency of limited CPU cache space, we introduce an index caching
scheme, named Search Lookaside Buffer (SLB), to accelerate search
on any user-defined in-memory index data structure. A key distinc-
tion of SLB from existing use of cache for the indices is that SLB
does not cache an index according to its memory access footprint.
Instead, it identifies and caches search results embedded in the tar-
get entries. By keeping itself small and its contents truly hot, SLB
can effectively improve cache utilization. SLB eliminates both false
temporal and spatial localities in the index searches, and enables
search at the cache speed.

The main contributions of this paper are as follows:
• We identify the issue of false temporal and false spatial local-
ities, in the use of major index data structures, responsible
for degradation of index search performance for significant
in-memory applications.

• We design and implement the SLB scheme, that can sub-
stantially increase cache hit ratio and improve search per-
formance by removing the false localities.

• Weconduct extensive experiments to evaluate SLBwith pop-
ular index data structures, in-memory key-value applications,
and a networked key-value store on a high-performance In-
finiband network. We also show its performance impact us-
ing real-world key-value traces from Facebook.

2 MOTIVATION
This work was motivated by observation of false temporal and spa-
tial localities in major index data structures and their performance
implication on important in-memory applications. In this section
we will describe the localities and their performance impact in two
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representative data structures, B+-trees and hash tables, followed
with discussions on similar issues with process page table and on
how the solution of SLB was inspired by an important invention
in computer architecture—the TLB table.

2.1 False localities in B+-trees
B+-tree [3] and many of its variants have been widely used on
managing large ordered indices in databases [24, 46] and file sys-
tems [7, 44].

In B+-tree each lookup needs to traverse the tree starting from
the root to a leaf node with a key (see Figure 2). With a high fan-
out, The selection of a child node leads to multiple cache misses
in a single node. For example, a 4-KB node contains 64 cache lines,
and requires roughly six (log2 64) cache-line accesses in the binary
search. One lookup operation on a B+-tree of four levels could re-
quire 24 cache-line accesses. These cache lines are at least as fre-
quently accessed as the target entry’s cache line. For a target entry
in the working set, all these cache lines will also be included in the
working set. However, if one can directly reach the target entry
without accessing these cache lines, the search can be completed
by only one cache line access with the false temporal locality re-
moved.

2.2 False localities in hash tables
A commonly used hash table is to use chaining for resolving colli-
sion. A hash directory consists of an array of pointers, each repre-
senting a hash bucket pointing to a linked list to store items with
the same hash value. With a target search entry on one of the lists,
the aforementioned false temporal locality exists. A longer list is
more likely to have substantial false temporal locality.

In addition to the false temporal locality, the hash table also ex-
hibits false spatial locality. To reach a target entry in a bucket, a
search has to walk over one or more nodes on the list. Each node,
containing a pointer and possibly a key, is substantially smaller
than a 64 B cache line. Alongside the nodes, the cache lines also
hold cold data that is less likely to be frequently accessed. However,
this false spatial locality issue cannot be addressed by increasing
the directory size and shortening the list lengths. A larger directory
would lead to even weaker spatial locality for access of pointers in
it. For every 8 B pointer in a 64 B cache line, 87.5% of the cache
space is wasted.

Some hash tables, such as Cuckoo hashing [42] and Hopscotch
hashing [21], use open addressing, rather than linked lists, to re-
solve collision for a predictable worst-case performance. However,
they share the issue of false spatial localitywith the chaining-based
hash tables. In addition, open-addressing hashing usually still needs
to make multiple probes to locate a key, which leads to false tem-
poral locality.

2.3 Search Lookaside Buffer: inspired by TLB
The issues challenging effective use of CPU cache for fast search
on indices well resemble those found in the use of page table for
virtual address translation. First, as each process in the system has
its own page table, total size of the tables can be substantial and it
is unlikely to keep them all in the CPU cache. Second, the tables
are frequently searched. For every memory-access instruction the

table must be consulted to look up the physical address with a vir-
tual address as the key. Third, the tree-structured table consists of
multiple levels leading to serious false temporal locality. Fourth,
though spatial locality often exists at the leaf level of the tables,
such locality is less likely for intermediate entries. If the page ta-
bles were cached as regular in-memory data in the CPU cache, the
demand on cache space would be significantly higher and the ta-
bles’ cache hit ratio would be much lower. The consequence would
be a much slower system.

Our solution is inspired by the one used for addressing the is-
sue of caching page tables, which is Translation Lookaside Buffer
(TLB), a specialized hardware cache [50]. In TLB, only page-table
search results—recently accessed Page Table Entries (PTEs) at the
leaf level—are cached. With a TLB as large as only a few hundreds
of entries, it can achieve a high hit ratio, such as a few misses per
one million instructions [34] or less than 0.5% of execution time
spent on handling TLB misses [5].

It is indisputable that use of TLB, rather than treating page ta-
bles as regular data structure and caching them in the regular CPU
cache, is an indispensable technique. “Because of their tremendous
performance impact, TLBs in a real sense make virtual memory pos-
sible” [1]. Index search shares most issues that had challenged use
of page tables decades ago. Unfortunately, the success of TLB de-
sign has not influenced the design on general-purpose indices. An
anecdotal evidence is that to allow hash indices associated with
database tables to be cache-resident, nowadays one may have to
take a table partitioning phase to manually reduce index size [35].

While SLB intends to accommodate arbitrary user-defined in-
dices and search algorithms on them, which can be of high varia-
tion and irregularity, it is not a good choice to dedicate a hardware
cache separate from regular CPU cache and to apply customized
management with hardware support for SLB. Instead, SLB takes
an approach different from TLB. It sets up a buffer in the mem-
ory holding only hot target entries. SLB intends to keep itself suffi-
ciently small and its contents truly hot so that its contents can be
all cached in the CPU cache. It aims to keep search requests from
reaching the indices, so that the indices can be much less accessed
and less likely to pollute the CPU cache.

3 DESIGN OF SLB
SLB is designed for applications where index search is a perfor-
mance bottleneck. While numerous studies have addressed the is-
sues with specific index data structures and search algorithms to
ameliorate this bottleneck, the SLB solution is intended to serve
any data structures and algorithms for accelerating the search. This
objective makes the solution have the risk of being over-compli-
cated and entangled with designs of various data structures and
algorithms. If this were the case, SLB would not have a clean inter-
face to the users’ programs. Fortunately, SLB is designed as a look-
aside buffer and works independently of index data structures and
their search algorithms. With limited interactions through the SLB
API, the programs are only required to emit search results to SLB
and delegate management of the search results to SLB.

To efficiently address the issue of false localities, the design of
SLB will achieve the following goals:
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// callback function types

typedef bool (* matchfunc )(void* entry ,void* key);

typedef u64 (* hashfunc )(void* opaque );

// SLB function calls

SLB* SLB_create(size_t size , matchfunc match ,

hashfunc keyhash , hashfunc entryhash );

void SLB_destroy(SLB* b);

void* SLB_get(SLB* b, void* key);

void SLB_emit(SLB* b, void* entry);

void SLB_invalidate(SLB* b, void* key);

void SLB_update(SLB* b, void* key , void* entry);

void SLB_lock(SLB* b, void* key);

void SLB_unlock(SLB* b, void* key);

Figure 4: SLB’s Functions in API

• SLB ensures the correctness of operations on the original
index data structure, especially for sophisticated concurrent
data structures.

• SLB is able to identify hot target entries in the index data
structure and efficiently adapt to changing workload pat-
terns with minimal cost.

• SLB is able to be easily integrated into programs using any
index data structures by exposing a clean and general inter-
face.

3.1 API of SLB
SLB’s API is shown in Figure 4. Its functions are used to support
accessing of the SLB cache, maintaining consistency for its cached
data, and currency control for its accesses.

3.1.1 Accessing the SLB cache. SLB is implemented as a library
of a small set of functions that are called to accelerate key search
in various index data structures. SLB is a cache for key-value (KV)
items.While conceptually the KV items in the cache are a subset of
those in the index, SLB uses its own key and value representations
that are independent from those used in the index data structure
defined and maintained by user code. The format of user-defined
keys and values can be different in different user codes. For exam-
ple, a key can either be a NULL-terminated string or a byte array
whose size is specified by an integer. A value can be either stored
next to its key in the target entry or linked to by a pointer next to
the key.

Rather than duplicating the real key-value data in its cache, SLB
stores a pointer to the target entry for each cached key-value item.
In addition, a fixed-size tag—the hash value of the original key—is

stored together with the pointer for quick lookup (see Section 3.2).
In this way the format of SLB cache is consistent across different
indices and applications. It is up to the user code to supply untyped
pointers to the target entries in the user-defined index, and to sup-
ply functions to extract or to compute hash tags from user-sup-
plied keys (keyhash()) and cached target entries (entryhash())
for SLB to use. While the formats of keys and target entries are un-
known to the SLB cache, SLB also needs a user-supplied function
(match()) to verify whether a key matches a target entry. All the
three functions are specified when an SLB cache is initialized with
the SLB_create() function.

After an SLB’s initialization, the cache can be accessed with
two functions. SLB_emit() emits a target entry successfully found
in an index search to the SLB cache. Note that SLB will decide
whether an emitted item will be inserted into the cache according
to knowledge it maintains about the current cache use. The user
simply calls SLB_emit() for every successful lookup on the index.

With SLB, a search in the index should be preceded by a lookup
in the SLB cache through calling SLB_get(). If there is a hit, the
search result is returned and a search on the actual index can be
bypassed.

3.1.2 Maintaining consistency. To prevent SLB from returning
stale data, user code needs to help maintain consistency between
the index and the SLB cache. For this purpose, user code should
call SLB_invalidate()when a user request removes an item from
the index, or call SLB_update() when an item is modified. SLB_-
update() should also be called if a target entry is relocated in
the memory due to internal reorganization of the index, such as
garbage collection.

As user code does not knowwhether an item is currently cached
by SLB, it has to call SLB_invalidate() or SLB_update() func-
tions for every item invalidation or updating, respectively. This is
not a performance concern, as the invalidation or update opera-
tions on the index are expensive by themselves and execution of
the function calls usually requires access only to one cache line.
The performance impact is still relatively small even when the
items are not in the SLB cache.

3.1.3 Managing concurrency. Applications usually distribute th-
eir workloads across multiple CPU cores for high performance.
They often use concurrency control, such as locking, to allow a
shared data structure to be concurrently accessed bymultiple cores.
Similarly, locking is used in SLB to manage concurrent accesses to
its data structures. For this purpose, SLB provides two functions,
SLB_lock() and SLB_unlock(), for user programs to inform SLB
cache whether a lock on a particular key should be applied.

To prevent locking from being a performance bottleneck, SLB
uses the lock striping technique to reduce lock contention [18, 20].
We divide the keys into a number of partitions and apply locking
on each partition. By default there are 1024 partitions, each pro-
tected by a spinlock. SLB uses a 10-bit hash value of the key to
select a partition.

A spinlock can be as small as only one byte. False sharing be-
tween locks could compromise the scalability of locking on multi-
core systems. To address the issue, each spinlock is padded with
unused bytes to exclusively occupy an entire cache line. Our use
of stripped spinlocks can sustain a throughput of over 300 million
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Figure 5: SLB’s Cache Table

lock-unlocks per second on a 16-core CPU, which is sufficient for
SLB to deliver high throughput in a concurrent execution environ-
ment.

To avoid deadlocks between SLB and the index data structure,
the user’s code should always acquire an SLB’s lock before acquir-
ing any lock(s) for its own index. SLB’s lock should be released
only after all modifications to the index has been finalized and the
locks on the index are released.

3.2 Data structure of the SLB cache
The SLB cache is to facilitate fast reach to requested target entries
with high time and space efficiency. For this reason, the cache has
to be kept small to allow its content to stay in the CPU cache as
much as possible, so that target entries can be reached with (al-
most) zero memory access. However, the target entries can be of
different sizes in different indices and can be quite large. Therefore,
we cannot store target entries directly in the SLB cache. Instead, we
store pointers to them.

Specifically, search results emitted into the SLB cache are stored
in a hash table named Cache Table. To locate an item in a Cache Ta-
ble, a 64-bit hash value is first obtained by calling the user-supplied
functions (keyhash() or entryhash()) to select a hash bucket. As
shown in Figure 5, each bucket occupies a cache line and the num-
ber of buckets is determined by the size of the SLB cache. Within
each bucket there are seven pointers, each pointing to a target en-
try. As on most 64-bit CPU architectures no more than 48 bits are
used for memory addressing, we use only 48 bits (6B) to store a
pointer.

To minimize the cost for lookup of the requested target entry in
a bucket, we use the higher 16 bits of the 64-bit hash value as a tag
and store it with its corresponding pointer. On lookup, any target
entry whose tag matches the requested key’s tag will be selected
and then a full comparison between the keys is performed using
the user-supplied match() function. If there is a match the value
in the target entry is returned to complete the search.

3.3 Tracking access locality for cache
replacement

As the SLB cache has limited space, a decision has to be made
on what items can be admitted and what items can stay in the
cache based on their recent access locality, or their temperatures.
Only comparatively hot items should be admitted or be kept in
the cache. To this end, SLB needs to track temperatures for cached
items and (uncached) target entries that can potentially be emit-
ted to SLB. However, conventional approaches for tracking access

Hash(key)

Log Table

4-byte Hash Tag

Hash Hash Hash

Hash Hash Hash Hash

Hash Hash Hash Hash

Hash Hash Hash Hash

Head Tail

Circular Log Metadata

Figure 6: SLB’s Log Table

locality are too expensive for SLB. For example, the list-based re-
placement schemes, such as LRU, require two pointers for each el-
ement, which would triple the size of Cache Table by storing three
pointers for each item. Low cost replacement algorithm, such as
CLOCK [11], uses only one bit per item. However it still requires
global scanning to identify cold items. We develop a highly effi-
cient locality tracking method that can effectively identify rela-
tively hot items for caching in SLB.

3.3.1 Tracking access history of cached items. As shown in Fig-
ure 5, SLB’s Cache Table has a structure similar to that of hardware-
based CPU cache, which partitions cache entries into sets and iden-
tifies themwith their tags. Similarly, SLB’s replacement is localized
within each hash bucket of a cache line size. A bucket contains
seven 1-byte counters, each associated with a {tag, pointer} pair in
the bucket (see Figure 5). Upon a hit on an item, its corresponding
counter is incremented by one. However overflow can happenwith
such a small counter. To address this issue, when a counter to be in-
cremented already reaches its maximum value (255) we randomly
select another non-zero counter from the same bucket and decre-
ment its value by one. In this way, relative temperatures of cached
items in a bucket can be approximately maintained without any
access outside of this bucket. To make room for a newly admitted
item in a bucket, SLB selects an item of the smallest counter value
for replacement.

3.3.2 Tracking access history of target entries. When a target en-
try is emitted to the SLB cache, SLB cannot simply admit it by evict-
ing a currently cached item unless the new item is sufficiently hot.
For this purpose, SLB also needs to keep tracking their accesses, or
emissions made by the user code. However, this can be challeng-
ing. First, tracking the access history may require extra metadata
attached to each item in the index. Example of such metadata in-
clude the two pointers in LRU and the extra bit in CLOCK. Unfor-
tunately this option is undesirable for SLB as it requires intrusive
modification to the user’s index data structure, making it error-
prone. Second, tracking temperature of cold entries can introduce
expensive writes to random memory locations. For example, each
LRU update requires six pointer changes, which is too expensive
with accesses of many cold entries.

To know whether a newly emitted item is hot, we use an ap-
proximate logging scheme to track its access history in a hash ta-
ble, named Log Table and illustrated in Figure 6. In this hash table,
each bucket is also of 64 byte, the size of a cache line. In each bucket
there can be up to 15 log entries, forming a circular log. When an
item is emitted to SLB, SLB computes a 4-byte hash tag from the
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key and appends it to the circular log in the corresponding bucket,
where the item at the log head is discarded if the log has been full.
The newly admitted item is considered to be sufficiently hot and el-
igible for caching in the Cache Table if the number of a key’s hash
tag in the log exceeds a threshold (three). In this history tracking
scheme, different target entries may produce the same hash tag
recorded in a log, which inflates the tag’s occurrence. However,
with 4-byte tag and a large number of buckets this inflation is less
likely to take place. Even if it does happen, the impact is negligible.

3.3.3 Reducing cost of accessing the Log Table. For a more ac-
curate history tracking in the Log Table, we usually use a large
table (by default four times the size of the Cache Table) and do not
expect many of its buckets stay in the CPU cache. With expected
heavy cachemisses for the logging operations in the table, we need
to significantly reduce the operations on it. To this end, SLB ran-
domly samples emitted items and logs only a fraction of them (5%
by default) into the Log Table. This throttled history tracking is effi-
cient and its impact on tracking accuracy is small. If the SLB cache
has a consistently high or low hit ratios, the replacement would
have less potential to further improve or reduce the performance,
respectively. As a result, history tracking is not performance-crit-
ical and can be throttled. When the workload changes its access
pattern, the changes will still be reflected in the logs even with
the use of throttling (though it will take a longer time). With a
workload mostly running at its steady phases, this does not pose
a problem. As throttling may cause new items to enter the Cache
Table at a lower rate, SLB disables throttling when the table is not
full yet to allow the SLB cache to be quickly warmed up.

4 EVALUATION
We have implemented SLB as a C library and integrated it with a
number of representative index data structures andmemory-inten-
sive applications. We conducted extensive experiments to evaluate
it. In the evaluation, we attempt to answer a few questions:

• How does SLB improve search performance on various data
structures?

• Does SLB have good scalability on a multi-core system?
• Howmuch can SLB improve performance of network-based
applications?

• How does SLB perform with real-world workloads?

4.1 Experimental setup
In the evaluation we use two servers. Hardware parameters of the
servers are listed in Table 1. Hyper-threading feature in CPU is
turned off in BIOS to obtain more consistent performance mea-
surements. To minimize the interference of caching and locking
between the CPU sockets, we use a single CPU socket (16 cores) to
run the experiments unless otherwise noted.

The servers run a 64-bit Linux 4.8.13. To reduce the interference
of TLB misses, we use Huge Pages [22] (2MB or 1GB pages) for
large memory allocations. xxHash hash algorithm [53] is used in
SLB.

We evaluate SLB with four commonly used index data struc-
tures (Skip List, B+-tree, chaining hash table, and Cuckoo hash ta-
ble), and two high-performance key-value applications (LMDB [33]
and MICA [32]). As it is very slow to fill up a large DRAM with

Table 1: Hardware parameters

Machine Model Dell PowerEdge R730
CPU Version Intel Xeon E5-2683 v4
Number of sockets 2
Cores per socket 16
L1 Cache (per core) 64 KB
L2 Cache (per core) 256 KB
L3 Cache (per socket) 40MB
DRAM Capacity 256GB (16×16GB)
DRAM Model DDR4-2133 ECC Registered
Infiniband Network Mellanox ConnectX-4 (100Gb/s)

Table 2: SLB parameters

Cache Table size 16MB 32MB 64MB
# target entries 1835008 3670016 7340032
Log Table size 64MB 128MB 256MB
# hash tags 15728640 31457280 62914560
Total Size 80MB 160MB 320MB
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Figure 7: Throughput with B+-tree and Skip List.

small KV items, we use a data set of about 9GB (including meta-
data and data) for all the experiments unless otherwise noted. We
also evaluate SLB by replaying real-world key-value traces from
Facebook [2], and by running SLB-enabled MICA on high-perfor-
mance Infiniband network.

4.2 Performance on index data structures
In this experiment we first fill one of the data structures (Skip List,
B+-tree, chaining hash table, and Cuckoo hash table) with 100 mil-
lion key-value items, each with a 8 B key and a 64 B value. Then
we issue GET requests to the index using 16 worker threads, each
exclusively bound to a CPU core. The workload is pre-generated
in memory following the Zipfian distribution with a skewness of
0.99. For each data structure, we vary size of SLB’s Cache Table
from 16MB, 32MB, to 64MB. We configure size of the Log Table
to be 4× of the Cache Table’s size. SLB’s configurations are listed in
Table 2. We vary the data set, or the key range used in the Zipfian
generator, from 0.1 million to 100 million keys.
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Figure 8: Throughput with two hash tables.

4.2.1 B+-tree and Skip List. Figure 7 shows GET throughput of
the two ordered data structures: B+-tree and Skip List. As shown,
SLB dramatically improves the throughput of searching on the two
indices by as much as 22 times. Due to existence of significant
false localities in the index search, even for a small data set of less
than 10MB, the actual working set observed by the CPU cache can
be much larger than the CPU’s 40MB cache, leading to intensive
misses. In addition, search on the two indices requires frequent
pointer dereferences and key comparisons, consuming many CPU
cycles even for items that are already in the CPU cache. Conse-
quently the two data structures exhibit consistently low through-
put when SLB is not used.

When the data set grows larger, throughput with SLB reduces
but remains at least more than 2× of the throughput with SLB dis-
abled. A larger SLB cache helps to remove false localities for more
target entries. This explains the fact that the throughput of the
64MB SLB is higher than that with a smaller SLB cache on a rela-
tively large data set (≥ 100MB). However, the performance trend
reverses for a smaller data set, where a smaller SLB cache produces
higher throughput. With a small data set on the index search and
a relatively large SLB cache, the cache may store many cold items
that fill the SLB’s cache space but produce a smaller number of
hits. The relatively cold items in the SLB cache can still cause false
spatial locality for a larger SLB cache. Though SLB’s performance
advantage is not sensitive to the SLB cache size, it is ideal to match
the cache size to the actual working set size to receive optimal per-
formance.

4.2.2 Hash tables. Figure 8 shows the throughput improvement
of SLB with two hash tables. Without using SLB, Cuckoo hash ta-
ble has lower throughput than the chaining hash table with smaller
data sets. On the Cuckoo hash table each lookup accesses about 1.5
buckets on average. In contrast, we configure the chaining hash ta-
ble to aggressively expand its directory so that the chain on each
hash bucket has only one entry on average. For this reason the
Cuckoo hash table has more significant false localities that can be
removed by the SLB cache.

For the chaining hash table, the improvement mostly comes
from its elimination of false spatial locality. Figure 8b shows that
the chaining hash table has very high throughput with small data
sets that can be all held in the CPU cache. Once the data set grows
larger, the throughput drops quickly because of false spatial local-
ity. This is the timewhen SLB kicks in and improves its throughput
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Figure 9: Throughput with 1 billion items (∼90GB).
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Figure 10: Scalability of chaining hash table with 32MB SLB.

by up to 28% for medium-size data sets of 20MB to 1GB.When the
data set becomes very large, the improvement diminishes. This is
because in the Zipfian workloads with large data sets, the access
locality becomes weak, and hot entries in the tables are less dis-
tinct from cold ones. SLB becomes less effective as it relies on the
locality to improve CPU cache utilization with a small Cache Table.

SLB only makes moderate improvements for chaining hash ta-
ble because we choose the most favorable configuration for chain-
ing hash table. Aggressively expanding the hash directory canmax-
imize its performance but also consume excessive amount of mem-
ory. With a conservative configuration SLB can help to maintain a
high throughput by removing more false localities.

To further evaluate SLB with even larger data sets, we increase
the total number of KV items in the table to 1 billion, which con-
sumes about 90GB of memory. We rerun the experiments on the
large tables. As shown in Figure 9, with a larger table the overall
throughput of all test cases reduces. This is mainly because the
random access over a larger index leads to increased TLB misses.
Even so, the relative improvement made by the SLB cache mostly
remains.

4.2.3 Scalability. To evaluate the scalability of SLB, we change
the number of worker threads from 1 to 16 and rerun the experi-
ments using the chaining hash table. As shown in Figure 10a, SLB
exhibits strong scalability. Doubling the number ofworking threads
leads to almost doubled throughput. With the increase of data set
size the throughput ratio between 16 threads and 1 thread increases
from 11.5 to 13.8, because a larger data set has more balanced ac-
cesses across the hash table, which reduces contention.
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Figure 11: Throughput of chaining hash table with mixed
GET/SET workload.

To evaluate SLB in a multi-socket system, we run the experi-
ment by using equal number of cores from each of the two sockets.
The two curves on the top of Figure 10b show the throughput of
using 32 cores with SLB enabled/disabled. With both sockets being
fully loaded, SLB can still improve the throughput by up to 34%.

We observe that the throughput with 32 cores is only 17% to
36% higher than that with 16 cores on one socket. When using 16
cores, the throughputwith 8 cores on each of the two sockets is 30%
lower than that with all 16 cores on a single socket. The impact of
using two or more sockets in an index data structure is twofold.
On one hand the increased cache size allows more metadata and
data to be cached. On the other hand, maintaining cache coherence
between different sockets is more expensive. Excessive locking and
data sharing in a concurrent hash table can offset the benefit of
increased cache size. As a result, localizing the accesses to a single
socket is more cost-effective for a high-performance concurrent
data structure.

4.2.4 Performance with mixed GET/SET. While SLB delivers im-
pressive performance benefit with workloads of GET requests, SET
requests can pose a challenge. Serving SET requests requires inval-
idation or update operations to maintain consistency between the
SLB cache and the index. To reveal how SLB performs with mixed
GET/SET operations, we change the workload to include a mix of
GET/SET requests. On the hash table a SET operation ismuchmore
expensive than aGET. As shown in Figure 11, when SLB is not used,
with a small percentage of SET requests (5%) the throughput is 31%
lower than that of GET-only workload (see Figure 8b). It further de-
creases to less than 55MOPS (million operations per second) with
50% SET in the workload, or another 41% decrease. When SLB is
used, with 5% SET performance advantage of SLB remains (com-
pare Figures 8b and 11a). However, with 50% SET, the benefit of
SLB diminishes as expected.

4.3 Performance of KV applications
To understand SLB’s performance characteristics in real-world ap-
plications, we run the experiments with two high-performance
key-value stores, LMDB [33] and MICA [32].

4.3.1 LMDB. LMDB is a copy-on-write transactional persistent
key-value store based on B+-tree. LMDB uses mmap() system call
to map data files onto the main memory for direct access. In a

warmed-up LMDB all requests can be served from memory with-
out any I/O operations. In total 124 lines of code are added to LMDB
to enable SLB. We use the same workload consisting of GET re-
quests described in Section 4.2.

Figure 12a shows the throughput of LMDB.With larger data sets
LMDB’s throughput is similar to that of B+-tree (See Figure 7a), be-
cause it uses B+-tree as its core index structure. However, for small
data sets, throughput with SLB-enabled LMDB is lower than that
with B+-tree. In addition to index search, LMDB has more over-
head on version control and transaction support. For a small data
set whoseworking set can almost entirely be held in the CPU cache
by using SLB, LMDB spent a substantial amount of CPU cycles on
the extra operations. Its peak throughput is capped at 139MOPS,
about 27% reduction over the 190MOPS peak throughput received
for B+-tree with SLB.

4.3.2 MICA in the CREWmode. MICA is a chaining-hash-table-
based key-value store that uses bulk-chaining to reduce pointer
chasing during its search [32]. In the hash table each bucket is a
linked list, in which each node contains seven pointers that fills an
entire cache line. It also leverages load-balancing and offloading
features provided by advanced NICs to achieve high throughput
over high performance network [40]. In this experiment we first
remove the networking component from MICA to evaluate SLB’s
impact on MICA’s core index data structure.

MICA by default allows concurrent reads and exclusive writes
(CREW) to the table. MICA uses a versioning mechanism to elimi-
nate locking for concurrent read operations. In the meantime, writ-
ers still need to use locks to maintain consistency of the store. The
implication of employing lockless concurrency model for reads is
that MICA’s hash table cannot be resized when it grows. With
a fixed hash table size, the average length of the chains at each
bucket will increase linearly with the number of stored key-value
items. Consequently the long chains can lead to significant false
temporal locality. To shorten the long chains one might propose to
allocate a very large number of buckets when the table is created.
However, this may cause the items to be highly scattered in the
memory, leading to false spatial locality even for a very small data
set. This drawback makes MICA’s performance highly sensitive to
the number of key-value items in the table. In the experiments we
set up threeMICA tables with different number of buckets (222, 223,
or 224). Accordingly the average length of the chains in the three
tables are 4, 2, and 1, respectively.

Figures 12b, 12c, and 12d show throughput of the three MICA
configurations. MICA’s throughput is higher with more buckets
and thus shorter chains that help to reduce false temporal local-
ity. In the meantime, SLB still improves their throughput by up to
56% even for the table whose average chain length is one (see Fig-
ure 12d). The reason is that the versioning mechanism in MICA re-
quires two synchronous memory reads of a bucket’s version num-
ber for each GET request. Synchronous reads can be much slower
than regular memory reads even if the version number is already
in the CPU cache.

4.3.3 MICA in the EREW mode. To further reduce the interfer-
ence between CPU cores, MICA supports exclusive-read-exclusive-
write (EREW) mode, in which the hash table is partitioned into a
number of sub-tables, each exclusively runs on a core. As there is
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Figure 12: Throughput of LMDB and MICA using CREWmode. MICA is configured with three different table sizes.
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Figure 13: Throughput of MICA using EREW mode with 16
partitions.

no concurrent access to each sub-table, all costly protections for
concurrency can be safely removed. We experiment on this mode
where the SLB cache is also partitioned and its locks are also re-
moved.

Figure 13 shows the throughput of MICA in the EREW mode
with 16 partitions. The peak throughput of MICA with SLB can
reach 281MOPS, a 40% increase over its non-partitioned counter-
part. For MICA of 224 buckets, which has no false temporal locality,
SLB can still improve its throughput by up to 95% (see Figure 13b)
by removing the false spatial locality. This improvement suggests
removing locking in the management of the SLB cache can further
its performance advantage.

4.4 Performance of networked KV applications
While today’s off-the-shelf networking devices can support very
high bandwidth, SLB’s performance advantage on reducing CPU
cache misses becomes relevant for networked applications. For ex-
ample, using three 200Gb/s Infiniband links [23] ( 24 GB/s × 3)
can reach a throughput equal to the bandwidth of CPU’s memory
controller (76.8GB/s ) [25]. With the ever increasing network per-
formance, the performance of networked in-memory applications
will become more sensitive to the caching efficiency. To reveal the
implication of SLB on a real networked application, we port MICA
of its CREW mode to Infiniband using IB_SEND/IB_RECV verbs
API. We use a 100Gb/s (about 12GB/s) Infiniband link between two
servers. We send GET requests in batches (2048 requests in each
batch) to minimize the CPU cost on the networking operations.

Table 3: Hash table sizes after warm-up phase

Trace Name USR APP ETC VAR SYS
Table Size (GB) 9.6 63.8 84.3 6.2 0.08

Figures 14a and 14b show the throughput of MICA on the net-
work. Compared to that without networking, the throughput of
all configurations decreases and is capped at about 125 MOPS, as
the network bandwidth becomes the bottleneck. For 64-byte val-
ues, each GET response contains 92 bytes including the value and
associated metadata, and the 125 MOPS peak throughput of MICA
with LSB is equivalent to 10.7 GB/s, about 90% of the network’s
peak throughput.

Attempting to reach the highest possible performance of the net-
worked application, we minimize the network traffic by replacing
each key-value item in the responses with a 1-byte boolean value
indicating whether a value is found for the GET request. This es-
sentially turns the GET request into a PROBE request. Figures 14c
and 14d show the throughput for the PROBE requests on MICA
with two different numbers of buckets. As the network bottleneck
has been further reduced, the peak throughput recovers back to
about 200MOPS, almost the same as that of MICA without net-
working (see Figure 12d). In the meantime, most requests can be
quickly served from cache and CPU is less involved in network-
ing. However, the throughput drops quicker than that without net-
working. This is due to intensive DRAM accesses imposed by the
Infiniband NIC which interfere with the DRAM accesses from the
CPU.

4.5 Performance with real-world traces
To study SLB’s impact on real-world workloads, we replay five key-
value traces that were collected on Facebook’s production Mem-
cached system [2] on an SLB-enabled chaining hash table. The
five traces are USR, APP, ETC, VAR, and SYS, whose characteris-
tics have been extensively reported and studied [2]. As the concur-
rency information is not available in the traces, we assign requests
to each of the 16 worker threads in a round-robin fashion to con-
currently serve the requests.We use first 20% of each trace to warm
up the system and divide the remaining of the trace into seven seg-
ments to measure each segment’s throughput. The hash table sizes
after the warm-up phase are listed in Table 3.
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Figure 14: Throughput of MICA over a 100Gb/s Infiniband.
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Figure 15: Throughput of Chaining hash table with five Facebook key-value traces.

Figure 15 shows throughput of the traces in each of their seg-
ments. The results are quite different across the traces. USR is a
GET-dominant workload (GET ≥ 99%). It exhibits the least skew-
ness compared with other traces—about 20% keys contribute to
85% of accesses. Although this is still a skewed workload, its work-
ing set can be much larger than CPU’s cache size. As a result, SLB
is hard to reduce its cache miss ratio. Accordingly SLB can hardly
improve its throughput.

APP and ETC have much more skewed accesses than USR. In
APP, 10% of the keys contribute to over 95% of the accesses. In
ETC, 5% of the keys contribute to over 98% of the accesses. How-
ever, there two traces include about 10%–30% DELETE operations
in their segments, which subsequently increases the miss ratio in
the SLB cache.Misses in the SLB cache leads to slow index searches,
which cannot be removed by SLB. For these two traces SLB in-
creases the throughput by up to 20%.

VAR and SYS mainly comprise GET and UPDATE operations.
They have high skewness and relatively small working sets that
can be identified by the SLB cache and kept in the CPU cache. As a
result, SLB improves their peak throughput by up to 73% and 50%,
respectively.

The experiments with Facebook traces show that the effective-
ness of SLB mainly depends on the skewness of the workloads and
the size of the hot data set, rather than the total size of the index.

5 RELATEDWORK
With intensive use of indices in in-memory computing, studies
on optimizing their data structures and operations are extensive,
including improvements of index performance with software and

hardware approaches, and reduction of index size for higher mem-
ory efficiency.

5.1 Software approaches
There are numerous data structures developed to organize indices,
such as regular hash table using buckets (or linked lists) for colli-
sion resolution, Google’s sparse and dense hashmaps [17], Cuckoo
hashing [42], Hopscotch hashing [21], variants of B-tree [6], as
well as Bitmap Index [8] and Columnar Index [31].

To speed up index search, one may reduce hops of pointer chas-
ing in the index, such as reducing bucket size in hash tables or num-
ber of levels of trees. However, the approach usually comes with
compromises. For example, Cuckoo hashing uses open addressing
to guarantee that a lookup can be finished with at most two bucket
accesses. However, Cuckoo hashing may significantly increase in-
sertion cost by requiring possibly a large number of relocations or
kickouts [49].

A tree-based index, such as B+-tree, may reduce the depth of
a tree and therefore the number of hops to reach a leaf node by
employing a high fanout. However, wider nodes spanning a num-
ber of cache lines would induce additional cache misses. Masstree
employs a prefix-tree to partition the key-values into multiple B+-
trees according to their key-prefixes [36]. This can reduce the cost
of key comparisons with long keys. However, B+-tree is still used
in each partition to sort the key-values and the false localities in
the index cannot be removed. Complementary to the techniques
used by Masstree, SLB identifies the hot items in an index to fur-
ther reduce the overhead on accessing them.
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Specifically in the database domain efforts have been made on
software optimizations for specific operations on indices, such as
those on hash join algorithms to reduce cache miss rates [29, 35]
and to reduce miss penalty by inserting prefetch instructions in
the hash join operation [9]. These efforts demand extensive exper-
tise on algorithms for executing corresponding database queries
and their effectiveness is often limited on certain index organiza-
tions [19]. In contrast, SLB is a general-purpose solution that re-
quires little understanding on the index structures and algorithms
on them.

5.2 Hardware approaches
Other researches propose to accelerate index search with hard-
ware-based supports. These can be either designing new special-
ized hardware components [19, 30, 37], or leveraging newly avail-
able hardware features [10, 16, 54, 56]. Finding that “hash index
lookups to be the largest single contributor to the overall execution
time” for data analytics workloads running contemporary in-mem-
ory databases, Kocberber et al. proposed Widx, an on-chip accel-
erator for database hash index lookups [30]. By building special-
ized units on the CPU chip, this approach incurs higher cost and
longer design turn-around time than SLB. In addition, to use Widx
programmers must disclose how keys are hashed into hash buck-
ets and how to walk on the node list. This increases programmers’
burden and is in a sharp contrast with SLB, which does not require
any knowledge on how the search is actually conducted.

To take advantage of capability of supporting high parallelism,
researchers proposed to offload index-related operations to off-CPU
processing units, such as moving hash-joins to network proces-
sors [16] or to FPGAs [10], or moving index search for in-memory
key-value stores to GPUs [56]. Recognizing high cache miss ratio
and high miss penalty in the operations, these works exploit high
execution parallelism to reduce the impact of cache misses. As an
example, in the Mega-KV work, the authors found that index op-
erations take about 50% to 75% of total processing time in the key-
value workloads [56]. With two CPUs and two GPUs, Mega-KV
can process more than 160 million key-value requests per second.
However, to achieve such a high throughput, it has to process the
requests in large batches (10,000 requests per batch). Furthermore,
the latency of each request is significantly compromised because
of batching. Its minimal latency is 317 microseconds in Mega-KV,
much higher than that in a CPU-based store—only 6-27 microsec-
onds over an RDMA network [51]. For workloads with high ac-
cess locality, SLB can make most requests serviced within the CPU
cache. In this way, SLB is expected to achieve both high throughput
and low latency without requiring specialized hardware support.

5.3 Reducing index size
Large-scale data management applications are often challenged
with excessively large indices that consume toomuchmemory.Ma-
jor efforts have been made on reducing index sizes for database
systems and key-value stores. Finding that indices consume about
55% of the main memory in a state-of-the-art in-memory database
(H-Store), researchers have proposed dual-stage architectures to
achieve both high performance and high memory efficiency [55].
It sets up a front store to absorb hot writes. However, it does not

help with read performance. To improve Memcached’s hit ratio,
zExpander maintains a faster front store and a compact and com-
pressed backend store [52]. However, access of compressed data
will use CPU cycles and may pollute the cache. In contrast, SLB re-
duces CPU cache miss ratio by improving caching efficiency with
removed false localities.

A fundamental premise of these works is the access skew typi-
cally found in database and key-value workloads. In the workloads,
there is a clear distinction of hot and cold data items and the corre-
sponding locality is relatively stable [2, 12, 48]. This property has
been extensively exploited to manage buffer for disks [14, 26, 47],
to compress cold data in in-memory databases [15], and to con-
struct and manage indices or data items in a multi-stage struc-
tures [27, 52, 55]. As use of any caches does, SLB relies on existence
of temporal access locality in its workloads to be effective. Fortu-
nately, existing studies on workload characterization and practices
on leveraging the locality all suggest that such locality is widely
and commonly available.

6 LIMITATIONS
Search Lookaside Buffer improves index lookup efficiency by re-
moving the false temporal locality and false spatial locality in the
process of index traversal and exploiting true access locality. For an
application that uses index data structures, there are several factors
that may impact the overall benefit of using the SLB cache. Here
we list three possible scenarios where SLB produces only limited
improvements on applications’ performance.

• For index data structures that have been highly optimized,
such as some hash table implementations, there are not sub-
stantial false localities. As a result, there is limited space for
SLB to improve the lookup efficiency.

• SLB’s effectiveness depends on skewness of workload ac-
cess pattern. For workloads with weak locality, SLB has less
opportunity to improve the cache miss ratio.

• When indices are used to access large data items, only a
fraction of data access time is spent on index lookup. The
program’s performance improvement due to the use of SLB
can be limited even when the index lookup time is signifi-
cantly reduced.

7 CONCLUSION
In this paper we describe Search Lookaside Buffer (SLB), a soft-
ware cache that can accelerate search on user-defined in-memory
index data structures by effectively improving hardware cache uti-
lization. SLB uses a cost-effective locality tracking scheme to iden-
tify hot items on the index and caches them in a small SLB cache
to remove false temporal and false spatial localities from index
searches. Extensive experiments show that SLB can significantly
improve search efficiency on commonly used index data structures,
in-memory key-value applications, and a high performance key-
value store using 100Gb/s Infiniband. Experiments with real-world
Facebook key-value traces show up to 73% throughput increase
with SLB on a hash table.
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