
REMIX: Efficient Range Query for LSM-trees

Wenshao Zhong⋆ Chen Chen⋆ Xingbo Wu⋆ Song Jiang†

⋆University of Illinois at Chicago †University of Texas at Arlington

Abstract

LSM-tree based key-value (KV) stores organize data in a

multi-level structure for high-speed writes. Range queries on

traditional LSM-trees must seek and sort-merge data from

multiple table files on the fly, which is expensive and often

leads to mediocre read performance. To improve range query

efficiency on LSM-trees, we introduce a space-efficient KV

index data structure, named REMIX, that records a globally

sorted view of KV data spanning multiple table files. A range

query on multiple REMIX-indexed data files can quickly

locate the target key using a binary search, and retrieve

subsequent keys in sorted order without key comparisons. We

build RemixDB, an LSM-tree based KV-store that adopts a

write-efficient compaction strategy and employs REMIXes for

fast point and range queries. Experimental results show that

REMIXes can substantially improve range query performance

in a write-optimized LSM-tree based KV-store.

1 Introduction

Key-value stores (KV-stores) are the backbone of many

cloud and datacenter services, including social media [1,

2, 8], real-time analytics [7, 10, 25], e-commerce [18], and

cryptocurrency [41]. The log-structured merge-tree (LSM-

tree) [38] is the core data structure of many KV-stores [9, 18,

20, 26, 34, 42]. In contrast to traditional storage structures

(e.g., B+-tree) that require in-place updates on disk, LSM-

trees follow an out-of-place update scheme which enables

high-speed sequential write I/O. They buffer updates in

memory and periodically flush them to persistent storage

to generate immutable table files. However, this comes with

penalties on search efficiency as keys in a range may reside in

different tables, potentially slowing down queries because of

high computation and I/O costs. The LSM-tree based designs

represent a trade-off between update cost and search cost [17],

maintaining a lower update cost but a much higher search cost

compared with a B+-tree.

Much effort has been made to improve query performance.

To speed up point queries, every table is usually associated

with memory-resident Bloom filters [4] so that a query can

skip the tables that do not contain the target key. However,

Bloom filters cannot handle range queries. Range filters such

as SuRF [49] and Rosetta [37] were proposed to accelerate

range queries by filtering out tables not containing any keys in

the requested range. However, when the keys in the requested

range reside in most of the candidate tables, the filtering

approach can hardly improve query performance, especially

for large range queries. Furthermore, the computation cost

of accessing filters can lead to mediocre performance when

queries can be answered by cache, which is often the case in

real-world workloads [2, 8, 13].

To bound the number of tables that a search request

has to access, LSM-trees keep a background compaction

thread to constantly sort-merge tables. The table selection is

determined by a compaction strategy. The leveled compaction

strategy has been adopted by a number of KV-stores, including

LevelDB [26] and RocksDB [20]. Leveled compaction sort-

merges smaller sorted runs into larger ones to keep the number

of overlapping tables under a threshold. In practice, leveled

compaction provides the best read efficiency but has a high

write amplification (WA) due to its aggressive sort-merging

policy. Alternatively, the tiered compaction strategy waits

for multiple sorted runs of a similar size and merges them

into a larger run. Tiered compaction provides lower WA and

higher update throughput. It has been adopted by many KV-

stores, such as Cassandra [34] and ScyllaDB [42]. Since tiered

compaction cannot effectively limit the number of overlapping

tables, it leads to much higher search cost compared with

leveled compaction. Other compaction strategies can better

balance the read and write efficiency [16, 17], but none of

them can achieve the best read and write efficiency at the

same time.

The problem lies in the fact that, to limit the number of

sorted runs, a store has to sort-merge and rewrite existing data.

Today’s storage technologies have shown much improved

random access efficiency. For example, random reads on

commodity Flash SSDs can exceed 50% of sequential read

throughput. New technologies such as 3D-XPoint (e.g., Intel’s

Optane SSD) offer near-equal performance for random and

sequential I/O [45]. As a result, KV-pairs do not have to be

physically sorted for fast access. Instead, a KV-store could

keep its data logically sorted for efficient point and range

queries while avoiding excessive rewrites.

To this end, we design REMIX, short for Range-query-

Efficient Multi-table IndeX. Unlike existing solutions to

improve range queries that struggle between physically

rewriting data and performing expensive sort-merging on

the fly, a REMIX employs a space-efficient data structure to

record a globally sorted view of KV data spanning multiple

table files. With REMIXes, an LSM-tree based KV-store

can take advantage of a write-efficient compaction strategy

without sacrificing search performance.

We build RemixDB, a REMIX-indexed LSM-tree based

KV-store. Integrated with the write-efficient tiered com-

paction strategy and a partitioned LSM-tree layout, RemixDB

achieves low WA and fast searches at the same time.

Experimental results show that REMIXes can effectively

improve range query performance when searching on multiple

overlapping tables. Performance evaluation demonstrates that

RemixDB outperforms the state-of-the-art LSM-tree based

KV-stores on both read and write operations simultaneously.

2 Background

The LSM-tree is designed for high write efficiency on

persistent storage devices. It achieves high-speed writes by

buffering all updates in an in-memory structure, called a

MemTable. When the MemTable fills up, the buffered keys

will be sorted and flushed to persistent storage as a sorted

run by a process called minor compaction. Minor compaction

is write-efficient because updates are written sequentially in

batches without merging with existing data in the store. Since

the sorted runs may have overlapping key ranges, a point

query has to check all the possible runs, leading to a high

search cost. To limit the number of overlapping runs, an LSM-

tree uses a major compaction process to sort-merge several

overlapping runs into fewer ones.

A compaction strategy determines how tables are selected

for major compaction. The two most commonly used strate-

gies are leveled compaction and tiered compaction. A store

using leveled compaction has a multi-level structure where

each level maintains a sorted run consisting of one or more

tables. The capacity of a level (Ln) is a multiple (usually

10 [20]) of the previous one (Ln−1), which allows a huge

KV-store to be organized within a few levels (usually 5 to 7).

Leveled compaction makes reads relatively efficient, but it

leads to inferior write efficiency. Leveled compaction selects

overlapping tables from adjacent levels (Ln and Ln+1) for sort-

merging and generates new tables in the larger level (Ln+1).

Because of the exponentially increasing capacity, a table’s

key range often overlaps several tables in the next level. As a

result, the majority of the writes are for rewriting existing data

in Ln+1, leading to high WA ratios1 of up to 40 in practice [40].

Figure 1 shows an example of leveled compaction where

1WA ratio refers to write amplification ratio, or ratio of the amount of

actual data written on the disk to the amount of user-requested data written.

7 86 90L0

4 21 38 66 89 L1

6 26 31 40 46 76 88 9755 67L2

Seek 67:

67 76 88
89

86

Figure 1: An LSM-tree using leveled compaction

4 91

2 79 93

64 95

11 22 26 60 61 67 71 81 92

L0

L1

L2

56 94

37 43

3 38 45

57 68

7 24

6 16 23 79 88 98

Seek 67: 91
79

94
95

68
67

Figure 2: An LSM-tree using tiered compaction

each table contains two or three keys. If the first table in L1

(containing keys (4, 21, 38)) is selected for sort-merging

with the first two tables in L2 ((6,26) and (31,40,46)), five

keys in L2 will be rewritten.

With tiered compaction, multiple overlapping sorted runs

can be buffered in a level, as shown in Figure 2. The number of

runs in a level is bounded by a threshold denoted by T , where

T > 1. When the number of sorted runs in a level (Ln) reaches

the threshold, all sorted runs in Ln will be sort-merged into

a new sorted run in the next level (Ln+1), without rewriting

any existing data in Ln+1. Accordingly, an LSM-tree’s WA

ratio is O(L) using tiered compaction [15], where L is the

number of levels. With a relatively large T , tiered compaction

provides much lower WA than leveled compaction does with

a similar L. However, since there can be multiple overlapping

sorted runs in each level, a point query will need to check up

to T ×L tables, leading to a much slower search.

Range query in LevelDB/RocksDB is realized by using an

iterator structure to navigate across multiple tables as if all

the keys are in one sorted run. A range query first initializes

an iterator using a seek operation with a seek key, the lower

boundary of the target key range. The seek operation positions

the iterator so that it points to the smallest key in the store that

is equal to or greater than the seek key (in lexical order for

string keys), which is denoted as the target key of the range

query. The next operation advances the iterator such that it

points to the next key in the sorted order. A sequence of next

operations can be used to retrieve the subsequent keys in the

target range until a certain condition is met (e.g., number of

keys or end of a range). Since the sorted runs are generated

chronologically, a target key can reside in any of the runs.

Accordingly, an iterator must keep track of all the sorted runs.

Figure 1 shows an example of seek on an LSM-tree using

leveled compaction. To seek key 67, a binary search is used

on each run to identify the smallest key satisfying key ≥
seek_key. Each identified key is marked by a cursor. Then

these keys are sort-merged using a min-heap structure [23],

and thus the key 67 in L2 is selected. Subsequently, each next

operation will compare the keys under the cursors, return

the smallest one, and advance the corresponding cursor. This

process presents a globally sorted view of the keys, as shown

in the upper right corner of Figure 1. In this example, all

three levels must be accessed for the sort-merging. Figure 2

shows a similar example with tiered compaction. Having six

overlapping sorted runs, a seek operation is more expensive

than the previous example. In practice, the threshold T in

tiered compaction is often set to a small value, such as T = 4 in

ScyllaDB [42], to avoid having too many overlapping sorted

runs in a store.

3 REMIX

A range query operation on multiple sorted runs constructs

a sorted view of the underlying tables on the fly so that

the keys can be retrieved in sorted order. In fact, a sorted

view inherits the immutability of the table files and remains

valid until any of the tables are deleted or replaced. However,

existing LSM-tree based KV-stores have not been able to take

advantage of this inherited immutability. Instead, sorted views

are repeatedly reconstructed at search time and immediately

discarded afterward, which leads to poor search performance

due to excessive computation and I/O. The motivation of

REMIX is to exploit the immutability of table files by

retaining the sorted view of the underlying tables and reusing

them for future searches.

For I/O efficiency, the LSM-tree based KV-stores employ

memory-efficient metadata formats, including sparse indexes

and Bloom filters [4]. If we record every key and its location

to retain the sorted views in a store, the store’s metadata could

be significantly inflated, leading to compromised performance

for both reads and writes. To avoid this issue, the REMIX data

structure must be space-efficient.

3.1 The REMIX Data Structure

The top of Figure 3 shows an example of a sorted view

containing three sorted runs, R0, R1, and R2. The sorted

view of the three runs is illustrated by the arrows, forming a

sequence of 15 keys. To construct a REMIX, we first divide

the keys of a sorted view into segments, each containing

a fixed number of keys. Each segment is attached with an

anchor key, a set of cursor offsets, and a set of run selectors.

An anchor key represents the smallest key in the segment. All

the anchor keys collectively form a sparse index on the sorted

view. Each cursor offset corresponds to a run and records the

position of the smallest key in the run that is equal to or greater

than the segment’s anchor key. Each key in a segment has a

corresponding run selector, which indicates the run where the

key resides. The run selectors encode the sequential access

path of the keys on the sorted view, starting from the anchor

key of the segment.

6 7 17 29 73

4 31 43 52 67

2 11 23 71 91R0

R2

R1

2 (4 6 7)

R0: 0

R1: 0

R2: 0

11(17 23 29)

R0: 1

R1: 2

R2: 1

31(43 52 67)

R0: 3

R1: 4

R2: 1

71(73 91)

R0: 3

R1: 4

R2: 5

Anchor keys:

Cursor

offsets:

0, 2, 1, 1,Run Selectors: 0, 1, 0, 1, 2, 2, 2, 2, 0, 1, 0

Figure 3: A sorted view of three sorted runs with REMIX

An iterator for a REMIX does not use a min-heap. Instead,

an iterator contains a set of cursors and a current pointer. Each

cursor corresponds to a run and points to the location of a

key in the run. The current pointer points to a run selector,

which selects a run, and the cursor of the run determines the

key currently being reached.

It takes three steps to seek a key using an iterator on a

REMIX. First, a binary search is performed on the anchor

keys to find the target segment whose range covers the seek

key, satisfying anchor_key ≤ seek_key. Second, the iterator is

initialized to point to the anchor key. Specifically, the cursors

are positioned using the cursor offsets of the segment, and

the current pointer is set to point to the first run selector of

the segment. Finally, the target key can be found by scanning

linearly on the sorted view. To advance the iterator, the cursor

of the current key is advanced to skip the key. Meanwhile,

the current pointer is also advanced to point to the next run

selector. After a seek operation, the subsequent keys on the

sorted view (within and beyond the target segment) can be

retrieved by advancing the iterator in the same manner.

Here is an example of a seek operation. As shown in

Figure 3, the four boxes on the bottom represent the REMIX

metadata that encodes the sorted view. Note that the keys

in parentheses are not part of the metadata. To seek key 17,

the second segment, which covers keys (11,17,23,29), is

selected with a binary search. Then the cursors are placed on

keys 11, 17, and 31 in R0, R1, and R2, respectively, according

to the segment’s cursor offsets ((1,2,1)). Meanwhile, the

current pointer is set to point to the first run selector of the

segment (0, the fifth selector in the figure), indicating that

the current key (11) is under the cursor of R0. Since 11 < 17,

the iterator needs to be advanced to find the smallest key k

satisfying k ≥ 17. To advance the iterator, the cursor on R0

is first advanced so that it skips key 11 and is now on key

23. The cursor offsets of the iterator now become 2, 2, and

1. Then, the current pointer is advanced to the second run

selector of the segment (1, the sixth selector in the figure).

The advanced iterator selects R1, and the current key 17 under

the cursor of R1 is the target key. This concludes the seek

operation. The subsequent keys (23, 29, 31, . . .) on the sorted

view can be retrieved by repeatedly advancing the iterator.

3.2 Efficient Search in a Segment

A seek operation initializes the iterator with a binary search on

the anchor keys to find the target segment and scans forward

on the sorted view to look for the target key. Increasing

the segment size can reduce the number of anchor keys and

speed up the binary search. However, it can slow down seek

operations because scanning in a large target segment needs

to access more keys on average. To address the potential

performance issue, we also use binary search within a target

segment to minimize the search cost.

Binary Search To perform binary search in a segment, we

must be able to randomly access every key in the segment.

A key in a segment belongs to a run, as indicated by the

corresponding run selector. To access a key, we need to place

the cursor of the run in the correct position. This can be

done by counting the number of occurrences of the same

run selector in the segment prior to the key and advancing

the corresponding cursor the same number of times. The

number of occurrences can be quickly calculated on the fly

using SIMD instructions on modern CPUs. The search range

can be quickly reduced with a few random accesses in the

segment until the target key is identified. To conclude the seek

operation, we initialize all the cursors using the occurrences

of each run selector prior to the target key.

Figure 4 shows an example of a segment having 16

run selectors. The number shown below each run selector

represents the number of occurrences of the same run selector

prior to its position. For example, 41 is the third key in R3

in this segment, so the corresponding number of occurrences

is 2 (under the third “3”). To access key 41, we initialize the

cursor of R3 and advance it twice to skip 5 and 23.

To seek key 41 in the segment in Figure 4, keys 43, 17, 31,

and 41 will be accessed successively during the binary search,

as shown by the arrows and the circled numbers. Key 43 is

the eighth key in the segment and the fourth key of R3 in the

segment. To access key 43, we initialize the cursor of R3 and

advance it three times to skip keys 5, 23, and 41. Then, key 17

can be accessed by reading the first key on R2 in this segment.

Similarly, 31 and 41 are the second and third keys on R1 and

R3, respectively. In the end, all the cursors of the iterator are

initialized to point to the correct keys. In this example, the

cursors will finally be at keys 61, 53, 89, and 41, where 41 is

the current key.

①②

3 0 1 2 3 1 3 3 1 0 0 1 0 3 2 3

0 0 0 0 1 1 2 3 2 1 2 3 3 4 1 5

Run Selectors:

Occurrences:

R0:

R1:

R2:

R3:

7 6171 79

13 31 53 73

17 89

5 23 4143 83 97

③④Access order:

Figure 4: An example of binary search in a segment. The

circled numbers indicate the access order of the keys.

I/O Optimization Performing binary search in a segment

can minimize the number of key comparisons. However, the

keys on the search path may reside in different runs and must

be retrieved with separate I/O requests if the respective data

blocks are not cached. For example, the search in Figure 4

only needs four key comparisons but has to access three runs.

In fact, it is likely that keys 41, 43, and a few other keys of

R3 belong to the same data block. Accordingly, after a key

comparison, the search can leverage the remaining keys in

the same data block to further reduce the search range before

it has to access a different run. In this way, each of the six

keys in R3 can be found without accessing any other runs.

When searching for key 79, for example, accessing R3 can

narrow down the search to the range between key 43 and key

83, where key 79 can be found in R0 after a key comparison

with key 71.

3.3 Search Efficiency

REMIXes improve range queries in three aspects.

REMIXes find the target key using one binary search.

A REMIX provides a sorted view of multiple sorted runs.

Only one binary search on a REMIX is required to position

the cursors on the target keys in multiple runs. Whereas

in a traditional LSM-tree based KV-store, a seek operation

requires a number of binary searches on each individual

run. For example, suppose a store with four equally-sized

runs has N keys in each run. A seek operation without a

REMIX requires 4× log2 N key comparisons, while it only

takes log2 4N, or 2+ log2 N key comparisons with a REMIX.

REMIXes move the iterator without key comparisons.

An iterator on a REMIX directly switches to the next (or

the previous) KV-pair by using the prerecorded run selectors

to update the cursors and the current pointer. This process

does not require any key comparisons. Reading a KV-pair can

also be avoided if the iterator skips the key. In contrast, an

iterator in a traditional LSM-tree based KV-store maintains a

min-heap to sort-merge the keys from multiple overlapping

sorted runs. In this scenario, a next operation requires reading

keys from multiple runs for comparisons.

REMIXes skip runs that are not on the search path. A

seek operation with a REMIX requires a binary search in the

target segment. Only those sorted runs containing the keys

on the search path will be accessed at search time. In the best

scenario, if a range of target keys reside in one run, such as

the segment (31,43,52,67) in Figure 3, only one run (R2 in

the example) will be accessed. However, a merging iterator

must access every run in a seek operation.

Furthermore, the substantially reduced seek cost allows

for efficient point queries (e.g., GET) on multiple sorted

runs indexed by a REMIX without using Bloom filters. We

extensively evaluate the point query efficiency in §5.1.

3.4 REMIX Storage Cost

REMIX metadata consists of three components: anchor keys,

cursor offsets, and run selectors. We define D to be the

maximum number of keys in a segment. A REMIX stores one

anchor key for every D keys, requiring 1/D of the total key

size in a level on average. Assuming the size of a cursor offset

is S bytes, a REMIX requires S×H bytes to store the cursor

offsets for every D keys, where H denotes the number of runs

indexed by a REMIX. A run selector requires ⌈log2(H)⌉ bits.

Adding all the three parts together, a REMIX is expected to

store ((L̄+SH)/D+ ⌈log2(H)⌉/8) bytes/key, where L̄ is the

average anchor key size.

We estimate the storage cost of a REMIX using the average

KV sizes publicly reported in Facebook’s production KV

workloads [2, 8]. In practice, S is implementation-defined,

and H depends on the number of tables being indexed. In the

estimation, we use cursor offsets of 4 bytes (S = 4) so that

a cursor offset can address 4 GB space for each sorted run.

We set the number of sorted runs to 8 (H = 8). With these

practical configurations, a REMIX stores ((L̄+32)/D+3/8)
bytes/key.

Table 1 shows the REMIX storage costs for each workload

with different D (D =16, 32, and 64). For comparison, it also

shows the storage cost of the block index (BI) and Bloom filter

(BF) of the SSTable format in LevelDB and RocksDB. Note

that table files indexed by REMIXes do not use block indexes

or Bloom filters. An SSTable stores a key and a block handle

for each 4 KB data block. The block index storage cost is

estimated by dividing the sum of the average KV size and an

approximate block handle size (4 B) by the estimated number

of KV-pairs in a 4 KB block. Bloom filters are estimated as

10 bits/key. The REMIX storage costs vary from 1.0 to 5.4

bytes/key for different D and L̄ values. For every key size,

increasing D can substantially reduce the REMIX storage cost.

The last column
(

REMIX
data

)

shows the size ratio of a REMIX to

its indexed KV data. In the worst case (the USR store), the

REMIX’s size is still less than 10% of the KV data’s size.

Table 1: REMIX storage cost with real-world KV sizes. BI

stands for Block Index. BF stands for Bloom Filter. The last

column shows the size ratio of REMIX to the KV data.

Work-

load

[2, 8]

Avg.

Key

Size

Avg.

Value

Size

Bytes/Key REMIX
dataSSTable REMIX (H=8)

BI BI+BF D=16 32 64 (D=32)

UDB 27.1 126.7 1.2 2.4 4.1 2.2 1.3 1.44%

Zippy 47.9 42.9 1.2 2.4 5.4 2.9 1.6 3.16%

UP2X 10.45 46.8 0.2 1.5 3.0 1.7 1.0 2.97%

USR 19 2 0.1 1.4 3.6 2.0 1.2 9.38%

APP 38 245 2.9 4.2 4.8 2.6 1.5 0.91%

ETC 41 358 4.4 5.6 4.9 2.7 1.5 0.67%

VAR 35 115 1.4 2.7 4.6 2.5 1.4 1.65%

SYS 28 396 3.3 4.6 4.1 2.3 1.3 0.53%

4 RemixDB

To evaluate the REMIX performance, we implement an LSM-

tree based KV-store named RemixDB. RemixDB employs

the tiered compaction strategy to achieve the best write

efficiency [16]. Real-world workloads often exhibit high

spatial locality [2, 8, 47]. Recent studies have shown that a

partitioned store layout can effectively reduce the compaction

cost under real-world workloads [24, 31]. RemixDB adopts

this approach by dividing the key space into partitions of non-

overlapping key ranges. The table files in each partition are

indexed by a REMIX, providing a sorted view of the partition.

In this way, RemixDB is essentially a single-level LSM-tree

using tiered compaction. RemixDB not only inherits the write

efficiency of tiered compaction but also achieves efficient

reads with the help of REMIXes. The point query operation

(GET) of RemixDB performs a seek operation and returns the

key under the iterator if it matches the target key. RemixDB

does not use Bloom filters.

Figure 5 shows the system components of RemixDB. Sim-

ilarly to LevelDB and RocksDB, RemixDB buffers updates

in a MemTable. Meanwhile, the updates are also appended

to a write-ahead log (WAL) for persistence. When the size

of the buffered updates reaches a threshold, the MemTable is

converted into an immutable MemTable for compaction, and a

new MemTable is created to receive updates. A compaction in

a partition creates a new version of the partition that includes

a mix of new and old table files and a new REMIX file. The

old version is garbage-collected after the compaction.

In a multi-level LSM-tree design, the size of a MemTable

is often only tens of MBs, close to the default SSTable size. In

a partitioned store layout, larger MemTables can accumulate

more updates before triggering a compaction [3, 24], which

helps to reduce WA. The MemTables and WAL have near-

constant space cost, which is modest given the large memory

and storage capacity in today’s datacenters. In RemixDB, the

maximum MemTable size is set to 4 GB. In the following, we

introduce the file structures (§4.1), the compaction process

(§4.2), and the cost and trade-offs of using REMIXes (§4.3).

REMIX

Table file

Table file

Table file

Table file

REMIX

Table file

Table file

REMIX

Table file

Table file

Table file

Write-ahead Log
MemTable

Immutable

MemTable
Compaction

Figure 5: Overview of RemixDB

4.1 The Structures of RemixDB Files

Table Files Figure 6 shows the table file format in

RemixDB. A data block is 4 KB by default. A large KV-pair

that does not fit in a 4 KB block exclusively occupies a jumbo

block that is a multiple of 4 KB. Each data block contains a

small array of its KV-pairs’ block offsets at the beginning of

the block for randomly accessing individual KV-pairs.

The metadata block is an array of 8-bit values, each

recording the number of keys in a 4 KB block. Accordingly, a

block can contain up to 255 KV-pairs. In a jumbo block,

except for the first 4 KB, the remaining ones have their

corresponding numbers set to 0 so that a non-zero number

always corresponds to a block’s head. With the offset arrays

and the metadata block, a search can quickly reach any

adjacent block and skip an arbitrary number of keys without

accessing the data blocks. Since the KV-pairs are indexed by

a REMIX, table files do not contain indexes or filters.

Table file

#keys #keys

block metadatablock block

#keys #keys
4 82 KV KV

Figure 6: Structure of a table file in RemixDB

REMIX Files Figure 7 shows the REMIX file format

in RemixDB. The anchor keys in a REMIX are orga-

nized in an immutable B+-tree-like index (similar to Lev-

elDB/RocksDB’s block index) that facilitates binary searches

on the anchor keys. Each anchor key is associated with a

segment ID that identifies the cursor offsets and run selectors

of a segment. A cursor offset consists of a 16-bit block index

and an 8-bit key index, shown as blk-id and key-id in

Figure 7. The block index can address up to 65,536 4-KB

blocks (256 MB). Each block can contain up to 256 KV-pairs

with the 8-bit key index.

Multiple versions of a key could exist in different table

files of a partition. A range query operation must skip the old

versions and return the newest version of each key. To this

end, in a REMIX, multiple versions of a key are ordered from

the newest to the oldest on the sorted view, and the highest

bit of each run selector is reserved to distinguish between

old and new versions. A forward scan operation will always

encounter the newest version of a key first, and then the old

versions can be skipped by checking the reserved bit of each

run selector without comparing any keys.

REMIX file

Cursor Offsets:

Run Selectors:

Sparse Index: (Anchor keys to Segment IDs)

0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1

blk-id key-id blk-id key-id blk-id key-id blk-id key-id

(Segment 1) (Segment 2)

(Segment 3)
In this example: H=2, D=8

Figure 7: Structure of a REMIX file in RemixDB

If a key has multiple versions, these versions can span two

segments. A search may have to check both the segments to

retrieve the newest version of the key. To simplify searches

in this scenario, we move all the versions of the key forward

to the second segment by inserting special run selectors as

placeholders in the first segment when constructing a REMIX.

We also make sure that the maximum number of keys in a

segment is equal to or greater than the number of runs indexed

by a REMIX (D ≥ H) so that every segment is large enough

to hold all the versions of a key.

To accommodate the special values mentioned above, each

run selector in RemixDB occupies a byte. The eighth and

seventh bits (0x80 and 0x40) of a run selector indicate an

old version and a deleted key (a tombstone), respectively. A

special value 63 (0x3f) represents a placeholder. In this way,

RemixDB can manage up to 63 sorted runs (0 to 62) in each

partition, which is sufficient in practice.

4.2 Compaction

In each partition, the compaction process estimates the

compaction cost based on the size of new data entering

the partition and the layout of existing tables. Based on the

estimation, one of the following procedures is executed:

• Abort: cancel the partition’s compaction and keep the new

data in the MemTables and the WAL.

• Minor Compaction: write the new data to one or multiple

new tables without rewriting existing tables.

• Major Compaction: merge the new data with some or all

of the existing tables.

• Split Compaction: merge the new data with all the existing

data and split the partition into a few new partitions.

Abort After a compaction, a partition that sees any new

table file will have its REMIX rebuilt. When a small table file

is created in a partition after a minor compaction, rebuilding

the REMIX can lead to high I/O cost. For example, the USR

workload in Table 1 has the highest size ratio of REMIX to

KV data (9.38%). Writing 100 MB of new data to a partition

with 1 GB of old table files will create a REMIX that is about

100 MB. To minimize the I/O cost, RemixDB can abort a

partition’s compaction if the estimated I/O cost is above a

threshold. In this scenario, the new KV data should stay in

the MemTables and the WAL until the next compaction.

However, in an extreme case, such as having a workload

with a uniform access pattern, the compaction process cannot

effectively move data into the partitions when most of the

partitions have their compactions aborted. To avoid this

problem, we further limit the size of new data that can stay

in the MemTables and WAL to be no more than 15% of the

maximum MemTable size. The compaction process can abort

the compactions that have the highest I/O cost until the size

limit has been reached.

New Data

New Table

Old Table

Old Table

Old Table

Old Table

REMIX

Minor

Compaction

Figure 8: Minor compaction

Major

Compaction

New Table

New Data

Old Table

Old Table

Old Table

Old Table

O. T.

O. T.

O. T.

Figure 9: Major compaction

Split

Compaction

New partitions

New TableNew Table

New Table New Table

New Data

Old Table

Old Table

Old Table

Old Table

Old Table

Figure 10: Split compaction

Minor Compaction A minor compaction writes new KV

data from the immutable MemTable into a partition without

rewriting existing table files and rebuilds the REMIX of

the partition. Depending on the new data’s size, a minor

compaction creates one or a few new table files. Minor

compaction is used when the expected number of table files

after the compaction (number of existing table files plus the

estimated number of new table files) is below a threshold T ,

which is 10 in our implementation. Figure 8 shows a minor

compaction example that creates one new table file.

Major Compaction A major (or split) compaction is

required when the expected number of table files in a partition

exceeds the threshold T . A major compaction sort-merges

existing table files into fewer ones. With a reduced number

of table files, minor compactions can be performed in the

future. The efficiency of a major compaction can be estimated

by the ratio of the number of input table files to the number

of output table files. Figure 9 shows a major compaction

example. In this example, the new data is merged with three

small table files, and only one new table file is created after the

compaction (ratio=3/1). If the entire partition is sort-merged,

the compaction needs to rewrite more data but still produces

three tables (ratio=5/3) because of the table file’s size limit.

Accordingly, major compaction chooses the number of input

files that can produce the highest ratio.

Split Compaction Major compaction may not effectively

reduce the number of tables in a partition filled with large

tables, which can be predicted by a low estimated input/output

ratio, such as 10/9. In this case, the partition should be

split into multiple partitions so that the number of tables in

each partition can be substantially reduced. Split compaction

sort-merges new data with all the existing table files in the

partition and produces new table files to form several new

partitions. Figure 10 shows a split compaction example. To

avoid creating many small partitions in a split compaction,

the compaction process creates M (M = 2 by default) new

table files in a partition before switching to the next partition.

In this way, a split compaction creates ⌈E/M⌉ new partitions,

where E is the number of new table files.

4.3 Rebuilding REMIXes

A partitioned store layout can effectively minimize the

compaction cost under real-world workloads with high spatial

locality [24, 31]. Specifically, RemixDB can absorb most of

the updates in a few partitions, and the compactions in the

partitions that receive fewer updates can be avoided (See §4.2).

However, if the workload lacks spatial locality, it is inevitable

that many partitions have to perform compactions with small

amounts of updates. Tiered compaction can minimize writes

in these partitions, but rebuilding the REMIX in a partition

still needs to read the existing tables. In our implementation,

RemixDB leverages the existing REMIX in the partition and

employs an efficient merging algorithm to minimize the I/O

cost of the rebuilding process.

When rebuilding the REMIX in a partition, the existing

tables are already indexed by the REMIX, and those tables

can be viewed as one sorted run. Accordingly, the rebuilding

process is equivalent to sort-merging two sorted runs, one

from the existing data and the other from the new data. When

the existing sorted run is significantly larger than the new

one, the generalized binary merging algorithm proposed by

Hwang et al. [30, 33] requires much fewer key comparisons

than sort-merging with a min-heap. The algorithm estimates

the location of each next merge point based on the size ratio

between the two sorted runs and search in the neighboring

range. In RemixDB, we approximate the algorithm by using

the anchor keys to locate the target segment containing the

merge point and finally applying a binary search in the

segment. In this process, accessing anchor keys does not

incur any I/O since they are stored in the REMIX. A binary

search in the target segment reads at most log2 D keys to find

the merge point. All the run selectors and cursor offsets for

the existing tables can be derived from the existing REMIX

without any I/O. To create anchor keys for the new segments,

we need to access at most one key per segment on the new

sorted view.

The read I/O of rebuilding a REMIX is bounded by

the size of all the tables in a partition. The rebuilding

process incurs read I/O to the existing tables in exchange

for minimized WA and improved future read performance.

Whether rebuilding a REMIX is cost effective depends on

how much write I/O one wants to save and how much future

read performance one wants to improve. In practice, writes in

SSDs are usually slower than reads and can cause permanent

damage to the devices [5, 27, 28, 45]. As a result, reads

are more economical than writes, especially for systems

having spare I/O bandwidth. In systems that expect intensive

writes with weak spatial locality, adopting a multi-level tiered

compaction strategy [40, 46] or delaying rebuilding REMIXes

in individual partitions can reduce the rebuilding cost at the

expense of having more levels of sorted views. Adapting

REMIXes with different store layouts is beyond the scope

of this paper. We empirically evaluate the rebuilding cost in

RemixDB under different workloads in §5.2.

5 Evaluation

In this section, we first evaluate the REMIX performance

characteristics (§5.1), and then benchmark RemixDB with a

set of micro-benchmarks and Yahoo’s YCSB benchmark tool

that emulates real-world workloads [13] (§5.2).

The evaluation system runs 64-bit Linux (v5.8.7) on two

Intel Xeon Silver 4210 CPUs and 64 GB of DRAM. The

experiments run on an Ext4 file system on a 960 GB Intel

905P Optane PCIe SSD.

5.1 Performance of REMIX-indexed Tables

We first evaluate the REMIX performance. We implement a

micro-benchmark framework that compares the performance

of REMIX-indexed tables with SSTables. The SSTables use

Bloom filters to accelerate point queries and employ merging

iterators to perform range queries.

Experimental Setup In each experiment, we first create a

set of H table files (1≤H ≤ 16), which resemble a partition in

a RemixDB or a level in an LSM-tree using tiered compaction.

Each table file contains 64 MB of KV-pairs, where the key

and value sizes are 16 B and 100 B, respectively. When H ≥ 2,

the KV-pairs can be assigned to the tables using two different

patterns:

• Weak locality: each key is assigned to a randomly

selected table, which provides weak access locality since

logically consecutive keys often reside in different tables.

• Strong locality: every 64 logically consecutive keys are

assigned to a randomly selected table, which provides

strong access locality since a range query can retrieve a

number of consecutive keys from few tables.

Each SSTable contains Bloom filters of 10 bits/key. A 64 MB

user-space block cache2 is used for accessing the files.

We measure the single-threaded throughput of three range

and point query operations, namely Seek, Seek+Next50, and

Get, using different sets of tables created with the above

configurations. A Seek+Next50 operation performs a seek and

retrieves the next 50 KV-pairs. In these experiments, the seek

keys are randomly selected following a uniform distribution.

For REMIX, we set the segment size to 32 (D = 32), and

measure the throughput with its in-segment binary search

turned on and off, denoted by full and partial binary search,

2LevelDB’s LRUCache implementation in util/cache.cc.

respectively (see §3.2). For point queries (Get), we measure

the throughput of SSTables with Bloom filters turned on and

off. We run each experiment until the throughput reading is

stable. Figures 11 and 12 show the throughput results for

tables with weak and strong access locality, respectively.

Seek on Tables of Weak Locality Figure 11a shows the

throughput of seek operations using a REMIX and a merging

iterator. We observe that the throughput with the merging

iterator is roughly 20% higher than that of a REMIX with

full binary search when there is only one table file. In this

scenario, both the mechanisms perform the same number of

key comparisons during the binary search. However, when

searching in a segment, the REMIX needs to count the number

of occurrences on the fly and move the iterator from the

beginning of the segment to reach a key for comparison, which

is more expensive than a regular iterator.

The throughput of a merging iterator quickly drops as the

number of table files increases. Specifically, the throughput

of two tables is 50% lower than that of one table; a seek

on eight tables is more than 11× slower than a seek on one

table. The seek time of a merging iterator is approximately

proportional to the number of table files. This is because

the merging iterator requires a full binary search on every

table file. The REMIX’s throughput also decreases with more

tables files. The slowdown is mainly due to the growing

dataset that requires more key comparisons and memory

accesses during a search. However, the REMIX with full

binary search achieves increasingly high speedups compared

with the merging iterator. Specifically, The speedups are 5.1×
and 9.3× with 8 and 16 table files, respectively.

The REMIX throughput decreases by 20% to 33% when

the in-segment binary search is turned off (with partial binary

search). In this scenario, a seek has to linearly scan the target

segment to find the target key. With D = 32, the average

number of key comparisons in a target segment is 5 (log2 D)

with full binary search and 16 (D/2) with partial binary search.

However, the search cost is still substantially lower than that

of a merging iterator. The REMIX with partial binary search

outperforms the merging iterator by 3.5× and 6.1×, with 8

and 16 table files, respectively.

Seek+Next50 Figure 11b shows the throughput of range

queries that seek and copy 50 KV-pairs to a user-provided

buffer. The overall throughput results are much lower than that

in the Seek experiments because the data copying is expensive.

However, the REMIX still outperforms the merging iterator

when there are two or more tables. The speedup is 1.4×,

2.3×, and 3.1× with 2, 8, and 16 table files, respectively. The

suboptimal scan performance of the merging iterator is due

to the expensive next operation that requires multiple key

comparisons to find the next key on the sorted view. For

each KV-pair copied to the buffer, multiple KV-pairs must be

read and compared to find the global minimum. In contrast,

a REMIX does not require any key comparisons in a next

operation.

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(a) Seek

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(b) Seek+Next50

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) SSTables w/ Bloom Filters

REMIX w/ Full B.Search
SSTables w/o Bloom Filters

(c) Get

Figure 11: Point and range query performance on tables where keys are randomly assigned (weak locality)

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(a) Seek

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(b) Seek+Next50

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) SSTables w/ Bloom Filters

REMIX w/ Full B.Search
SSTables w/o Bloom Filters

(c) Get

Figure 12: Point and range query performance on tables where every 64 keys are assigned to a table (strong locality)

In contrast to the substantial performance gap between

the two REMIX curves in Figure 11a, the two curves in

Figure 11b are very close to each other. This phenomenon is

the result of two effects: (1) the next operations dominate the

execution time and (2) the linear scanning of a seek operation

in a segment warms up the block cache, which makes the

future next operations faster.

Point Query Figure 11c shows the results of the point

query experiments. The REMIX’s curve is slightly lower than

its counterpart in Figure 11a because a get operation needs to

copy the KV-pair after a seek using the REMIX. Searching

on SSTables with Bloom filters outperforms searching on

REMIX-indexed table files when there are fewer than 14

tables. The reasons for the differences are two-fold. First, a

search can be effectively narrowed down to one table file at a

small cost of checking the Bloom filters. Second, searching in

an SSTable is faster than on a REMIX managing many more

keys. In the worst case, the REMIX’s throughput is 20% lower

than that of Bloom filters (with 3 tables). Unsurprisingly,

the searches with more than two SSTables are much slower

without Bloom filters.

Performance with Tables of Strong Locality Figure 12

shows the range and point query performance on tables with

strong access locality. The results in Figures 12a and 12b

follow a similar trend of their counterparts in Figure 11. In

general, the improved locality allows for faster binary searches

since in this scenario the last few key comparisons can often

use keys in the same data block. However, the throughput of

the merging iterator remains low because of the intensive key

comparisons that dominate the search time. The REMIX with

partial binary search improves more than that with full binary

search. This is because improved locality reduces the penalty

on the scanning in a target segment, where fewer cache misses

are incurred in each seek operation.

The REMIX point query performance also improves due

to the strong locality that speeds up the underlying seek

operations, as shown in Figure 12c. Meanwhile, the results

of Bloom filters stay unchanged because the search cost is

mainly determined by the false-positive rate and the search

cost on individual tables. As a result, REMIXes are able to

outperform Bloom filters when there are more than 9 tables.

Segment Size (D) We further evaluate REMIX range query

performance using different segment sizes (D ∈ {16,32,64})

on eight table files. The other configuration parameters are

the same as in the previous experiments. Figure 13 shows the

performance results. The throughput of seek-only operations

exhibits the largest variations with different Ds when the in-

segment binary search is turned off. This is because the linear

scanning in a segment adds a significant cost with a large D.

On the other hand, the differences become much smaller with

full binary search. In the meantime, a larger segment size still

leads to higher overhead because of the slower random access

speed within a segment. In the Seek+Next50 experiments, the

data copying dominates the execution time and there are no

significant differences when using different Ds.

Partial Full
0.00

0.25

0.50

0.75

Th
ro

ug
hp

ut
 (M

OP
S) Seek

Partial Full

Seek+Next50
D=16
D=32
D=64

(a) Tables of weak locality

Partial Full
0.00

0.25

0.50

0.75

Th
ro

ug
hp

ut
 (M

OP
S) Seek

Partial Full

Seek+Next50
D=16
D=32
D=64

(b) Tables of strong locality

Figure 13: REMIX range query performance with 8 runs

40 120 400
Value Size

0
1
2
3
4
5

Th
ro

ug
hp

ut
 (M

OP
S) Sequential

40 120 400
Value Size

Zipfian

40 120 400
Value Size

Uniform
RemixDB
LevelDB
RocksDB
PebblesDB

Figure 14: Range query with different value sizes

5.2 Performance of RemixDB

The following evaluates the performance of RemixDB, a

REMIX-indexed KV-store based on an LSM-tree.

Experimental Setup We compare RemixDB with state-of-

the-art LSM-tree based KV-stores, including Google’s Lev-

elDB [26], Facebook’s RocksDB [20], and PebblesDB [40].

LevelDB and RocksDB adopt the leveled compaction strategy

for balanced read and write efficiency. PebblesDB adopts the

tiered compaction strategy with multiple levels for improved

write efficiency at the cost of having more overlapping runs.

LevelDB (v1.22) supports only one compaction thread.

For RocksDB (v6.10.2), we use the configurations suggested

in its official Tuning Guide3 [21]. Specifically, RocksDB

can have at most three MemTables (one more immutable

MemTable than LevelDB). Both RocksDB and RemixDB

are configured with four compaction threads. RemixDB,

LevelDB, and RocksDB are all configured to use 64 MB table

files. For PebblesDB (#703bd01 [43]), we use the default

configurations in its db_bench benchmark program. For fair

comparisons, we disable compression and use a 4 GB block

cache in every KV-store. All the KV-stores are built with

optimizations turned on (release build).

In our experiments, we choose three value sizes—40, 120,

and 400 bytes. They roughly match the small (ZippyDB,

UP2X, USR), medium (UDB, VAR), and large (APP, ETC,

SYS) KV sizes in Facebook’s production systems [2, 8]. We

use 16-byte fixed-length keys, each containing a 64-bit integer

using hexadecimal encoding.

Range Query The first set of experiments focuses on

how different KV sizes and access patterns affect the search

efficiency of the KV-stores. In each experiment, we first

sequentially load 100 million KV-pairs into a store using

one of the three value sizes. After loading, we measure the

throughput of seek operations using four threads with three

access patterns, namely sequential, Zipfian (α = 0.99), and

uniform.

As shown in Figure 14, each set of results shows a similar

trend. While RemixDB exhibits the highest throughput, Lev-

elDB is also at least 2× faster than RocksDB and PebblesDB.

The sequential loading produces non-overlapping table files

in every store, which suggests that a seek operation needs to

access only one table file. However, a merging iterator must

3The configuration for Total ordered database, flash storage.

4 16 64 256
Store Size (GB)

0.0
0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
 (M

OP
S) Seek

4 16 64 256
Store Size (GB)

Seek+Next10

4 16 64 256
Store Size (GB)

Seek+Next50
RemixDB
LevelDB
RocksDB
PebblesDB

Figure 15: Range query with different store sizes

check every sorted run in the store even though they are non-

overlapping, which dominates the execution time of a seek

operation if the store has multiple sorted runs. Specifically,

each L0 table in LevelDB and RocksDB is an individual

sorted run, but each Li (i > 0) contains only one sorted run;

PebblesDB allows multiple sorted runs in every level. That

being said, LevelDB outperforms RocksDB by at least 2×
even though they both use leveled compaction. We observe

that RocksDB keeps several tables (eight in total) at L0

without moving them into a deeper level during the sequential

loading. In contrast, LevelDB directly pushes a table to a

deep level (L2 or L3) if it does not overlap with other tables,

which leaves LevelDB’s L0 always empty. Consequently, a

seek operation in RocksDB needs to sort-merge at least 12

sorted runs on the fly, while that number is only 3 or 4 in

LevelDB.

The seek performance is sensitive to access locality. A

weaker access locality leads to increased CPU and I/O cost

on the search path. In each experiment of a particular value

size, the throughput with a uniform access pattern is about

50% lower than that of sequential access. Meanwhile, the

performance with sequential access is less sensitive to value

size because the memory copying cost is insignificant.

The second set of experiments evaluates the range-scan

performance with different store sizes and query lengths. Each

experiment loads a fixed-size KV dataset with 120 B value

size into a store in a random order, then performs range-scans

with four threads using the Zipfian access pattern. As shown

in Figure 15, RemixDB outperforms the other stores in every

experiment. However, the performance differences among the

stores become smaller with longer scans. The reason is that

a long range-scan exhibits sequential access pattern on each

sorted run, where more data have been prefetched during the

scan. In the meantime, the memory-copying adds a constant

overhead to every store.

As the store size increases to 256 GB, the throughput of

LevelDB quickly drops to the same level as RocksDB. Since

the stores in the experiments are configured with a 4 GB block

cache, the cache misses lead to intensive I/Os that dominate

the query time. While RocksDB exhibits high computation

cost for having too many L0 tables with a small store size, the

cost is overshadowed by the excessive I/Os in large stores.

Meanwhile, RemixDB maintains the best access locality

because it incurs a minimal amount of random accesses and

cache misses by searching on a REMIX-indexed sorted run.

Write Read
0
1
2
3
4
5
6

To
ta

l I
/O

 (T
B)

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (M

OP
S)

User write
RemixDB
LevelDB
RocksDB
PebblesDB

Figure 16: Loading a 256 GB dataset in random order

Write We first evaluate the write performance of each

store by inserting a 256 GB KV dataset to an empty store in

a random order using one thread. The dataset has 2 billion

KV-pairs, and the value size is 120 B. The workload has a

uniform access pattern, representing the worst-case scenario

of the stores. We measure the throughput and the total I/O on

the SSD.

As shown in Figure 16, Both RemixDB and PebblesDB

show relatively high throughput because they employ the

write-efficient tiered compaction strategy. Their total write

I/O on the SSD are 1.25 TB and 2.37 TB, corresponding

to WA ratios of 4.88 and 9.26, respectively. LevelDB and

RocksDB adopt the leveled compaction strategy, which leads

to high WA ratios of 16.1 and 25.6, respectively. RocksDB

and RemixDB have much more read I/O than LevelDB and

PebblesDB. RocksDB employs four compaction threads to

exploit the SSD’s I/O bandwidth, resulting in more read I/O

than LevelDB due to less efficient block and page cache usage.

LevelDB only supports one compaction thread, and it shows

a much lower throughput than RocksDB. Although RemixDB

has more read I/O than RocksDB, the total I/O of RemixDB

is less than that of RocksDB. All told, RemixDB achieves low

WA and high write throughput at the cost of increased read

I/O.

We further evaluate the write performance of RemixDB

under workloads with varying spatial locality. We use three

access patterns, namely sequential, Zipfian (α = 0.99), and

Zipfian-Composite [24]. The Zipfian-Composite distribution

represents an agglomerate of attributes in real-world stores [1,

6, 8]. With Zipfian-Composite, the prefix of a key (the first

12 bytes) is drawn from the Zipfian distribution, and the

remainder of the key is drawn uniformly at random. For

each access pattern, the experiment starts with a 256 GB store

constructed as in the random write experiment then performs

2 billion updates (with 128 B values) to the store using the

respective access pattern. We measure the throughput and the

total I/O during the update phase.

As Figure 17 shows, the sequential workload exhibits the

highest throughput because each round of the compaction

only affects a few consecutive partitions in the store. The

write I/O mainly includes logging and creating new table

files, which is about 2× of the user writes. The read I/O for

rebuilding REMIXes is about the same as the existing data

(256 GB). Comparatively, with the two skewed workloads,

the repeated overwrites in the MemTable lead to substantially

Write Read
0.0

0.1

0.2

0.3

0.4

0.5

To
ta

l I
/O

 (T
B)

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (M

OP
S)

User write
Sequential
Zipfian
Zipfian-Composite

Figure 17: Sequential and skewed write with RemixDB

A B C D E F
0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut

(n
or

m
al

ize
d)

0.
66

4
(M

OP
S)

1.
15

1

0.
76

4

2.
19

6

0.
18

6

0.
92

5

RemixDB
LevelDB
RocksDB
PebblesDB

Figure 18: YCSB benchmark results

reduced write I/O. However, the skewed workloads create

scattered updates in the key space. This causes slower updates

in the MemTable and more partitions being compacted. The

Zipfian-Composite workload has weaker spatial locality than

Zipfian, resulting in higher compaction I/O cost.

The YCSB Benchmark The Yahoo Cloud Serving

Benchmark (YCSB) [13] is commonly used for evaluating

KV-store performance under realistic workloads. We use the

256 GB stores constructed in the random-write experiments

and run the YCSB workloads from A to F with four threads.

The details of the workloads are described in Table 2. In

workload E, a Scan operation performs a seek and retrieves

the next 50 KV-pairs. As shown in Figure 18, RemixDB

outperforms the other stores except in workload D, where the

read requests (95%) query the most recent updates produced

by the insertions (5%). This access pattern exhibits strong

locality, and most of the requests are directly served from

the MemTable(s) in every store. Meanwhile, LevelDB’s

performance (1.1 MOPS) is hindered by slow insertions

caused by the single-threaded compaction.

Even though REMIXes do not show an advantage over

Bloom filters in the micro-benchmarks (see Figure 11c),

RemixDB outperforms the other stores in workloads B and C,

where point query is the dominant operation. The reason is

that a point query in the multi-level LSM-tree has a high cost

selecting candidate tables on the search path. Specifically,

for each L0 table, about two key comparisons are used to

check if the seek key is covered by the table. If the key is not

found at L0, a binary search is used to select a table at each

deeper level Li (i ≥ 1) until the key is found. Furthermore, a

Bloom filter’s size is about 600 KB for a 64 MB table in this

setup. Accessing a Bloom filter performs up to seven random

memory accesses, which leads to excessive cache misses in a

large store [22]. The REMIX-indexed partitions in RemixDB

form a globally sorted view, on which a point query can be

quickly answered with a binary search.

Table 2: YCSB Workloads

Workload A B C D E F

Operations
R: 50%

U: 50%

R: 95%

U: 5%
R: 100%

R: 95%

I: 5%

S: 95%

I: 5%

R: 50%

M: 50%

Req. Dist. Zipfian Latest Zipfian

R: Read, U: Update, I: Insert, S:Scan, M: Read-Modify-Write.

6 Related Work

Improving Search with Filters Bloom filters [4] have

been indispensable for LSM-tree based KV-stores in reducing

the computation and I/O costs of point queries on a multi-

leveled store layout [15]. However, range queries cannot

be handled by Bloom filters because the search targets

are implicitly specified by range boundaries. Prefix Bloom

filters [19] can accelerate range queries [20, 26], but they

can only handle closed-range queries on common-prefix keys

(with an upper bound). Succinct Range Filter (SuRF) [49]

supports both open-range and closed-range queries. The

effectiveness of using SuRFs is highly dependent on the

distribution of keys and query patterns. Rosetta [37] uses

multiple layers of Bloom filters to achieve lower false positive

rates than SuRFs. However, it does not support open-range

queries and has prohibitively high CPU and memory costs

with large range queries. A fundamental limitation of the

filtering approach is that it cannot reduce search cost on tables

whose filters produce positive results. When the keys in the

target range are in most of the overlapping tables, range filters

do not speed up queries but cost more CPU cycles in the

search path. In contrast, REMIXes directly attack the problem

of having excessive table accesses and key comparisons

when using merging iterators in range queries. By searching

on a globally sorted view, REMIXes improve range query

performance with low computation and I/O cost.

Improving Search with Efficient Indexing KV-stores

based on B-trees or B+-trees [11, 39] achieve optimal search

efficiency by maintaining a globally sorted view of all the

KV data. These systems require in-place updates on the disk,

which lead to high WA and low write throughput. KVell [35]

achieves very fast reads and writes by employing a volatile

full index to manage unordered KV data on the disk. However,

the performance benefits come at a cost, including high

memory demand and slow recovery. Similarly, SLM-DB [31]

stores a B+-tree [29] in non-volatile memory (NVM) to

index KV data on the disk. This approach does not have

the above limitations, but it requires special hardware support

and increased software complexity. These limitations are also

found in NVM-enabled LSM-trees [32, 48]. Wisckey [36]

stores long values in a separate log to reduce index size

for search efficiency. However, the approach requires an

extra layer of indirection and does not improve performance

with small KV-pairs that are commonly seen in real-world

workloads [8, 47]. Bourbon [14] trains learned models to

accelerate searches on SSTables but does not support string

keys. REMIXes are not subject to these limitations. They

accelerate range queries in write-optimized LSM-tree based

KV stores by creating a space-efficient persistent sorted view

of the KV data.

Read and Write Trade-offs Dostoevsky and Wacky [16,

17] navigate LSM-tree based KV-store designs with different

merging policies to achieve the optimal trade-off between

reads and writes. Tiered compaction has been widely adopted

for minimizing WA in LSM-tree based KV-stores [34, 40,

42]. Other write-optimized indexes, such as Fractal trees and

Bε-trees, are also employed in KV-store designs [12, 44].

The improvements on write performance often come with

mediocre read performance in practice, especially for range

queries [24]. REMIXes address the issue of slow reads in

tiered compaction. They achieve fast range query and low

WA simultaneously.

7 Conclusion

We introduce the REMIX, a compact multi-table index data

structure for fast range queries in LSM-trees. The core idea

is to record a globally sorted view of multiple table files for

efficient search and scan. Based on REMIXes, RemixDB ef-

fectively improves range query performance while preserving

low write amplification using tiered compaction.

Acknowledgements

We are grateful to our shepherd William Jannen, the anony-

mous reviewers, Xingsheng Zhao, and Chun Zhao, for their

valuable feedback. This work was supported in part by the

UIC startup funding and US National Science Foundation

under Grant CCF-1815303.

References

[1] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba

Borthakur, and Mark Callaghan. “LinkBench: a

database benchmark based on the Facebook social

graph”. In: Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data (SIG-

MOD’13). 2013, pp. 1185–1196.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song

Jiang, and Mike Paleczny. “Workload analysis of

a large-scale key-value store”. In: ACM SIGMET-

RICS/PERFORMANCE Joint International Confer-

ence on Measurement and Modeling of Computer

Systems (SIGMATRICS’12). 2012, pp. 53–64.

[3] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis,

and Igor Zablotchi. “FloDB: Unlocking Memory in

Persistent Key-Value Stores”. In: Proceedings of the

Twelfth European Conference on Computer Systems

(EuroSys’17). 2017, pp. 80–94.

[4] Burton H. Bloom. “Space/Time Trade-offs in Hash

Coding with Allowable Errors”. In: Commun. ACM

13.7 (1970), pp. 422–426.

[5] Simona Boboila and Peter Desnoyers. “Write En-

durance in Flash Drives: Measurements and Analysis”.

In: 8th USENIX Conference on File and Storage

Technologies (FAST’10). 2010, pp. 115–128.

[6] Dhruba Borthakur et al. “Apache hadoop goes realtime

at Facebook”. In: Proceedings of the ACM SIGMOD

International Conference on Management of Data

(SIGMOD’11). 2011, pp. 1071–1080.

[7] Lucas Braun et al. “Analytics in Motion: High Perfor-

mance Event-Processing AND Real-Time Analytics in

the Same Database”. In: Proceedings of the 2015 ACM

SIGMOD International Conference on Management of

Data (SIGMOD’15). 2015, pp. 251–264.

[8] Zhichao Cao, Siying Dong, Sagar Vemuri, and David

H. C. Du. “Characterizing, Modeling, and Benchmark-

ing RocksDB Key-Value Workloads at Facebook”.

In: 18th USENIX Conference on File and Storage

Technologies, (FAST’20). 2020, pp. 209–223.

[9] Fay Chang et al. “Bigtable: A distributed storage

system for structured data”. In: ACM Transactions on

Computer Systems (TOCS) 26.2 (2008), pp. 1–26.

[10] Guoqiang Jerry Chen et al. “Realtime Data Pro-

cessing at Facebook”. In: Proceedings of the 2016

International Conference on Management of Data,

(SIGMOD’16). 2016, pp. 1087–1098.

[11] Howard Chu. LMDB: Lightning Memory-Mapped

Database Manager. URL: http://www.lmdb.tech/

doc/ (visited on 09/01/2020).

[12] Alexander Conway et al. “SplinterDB: Closing the

Bandwidth Gap for NVMe Key-Value Stores”. In:

2020 USENIX Annual Technical Conference (USENIX

ATC 2020). 2020, pp. 49–63.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, and Russell Sears. “Benchmarking

Cloud Serving Systems with YCSB”. In: Proceedings

of the 1st ACM Symposium on Cloud Computing

(SoCC’10). 2010, pp. 143–154.

[14] Yifan Dai et al. “From WiscKey to Bourbon: A

Learned Index for Log-Structured Merge Trees”. In:

14th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI’20). 2020, pp. 155–

171.

[15] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.

“Monkey: Optimal Navigable Key-Value Store”. In:

Proceedings of the 2017 ACM International Confer-

ence on Management of Data (SIGMOD’17). 2017,

pp. 79–94.

[16] Niv Dayan and Stratos Idreos. “Dostoevsky: Better

Space-Time Trade-Offs for LSM-Tree Based Key-

Value Stores via Adaptive Removal of Superfluous

Merging”. In: Proceedings of the 2018 International

Conference on Management of Data (SIGMOD’18).

2018, pp. 505–520.

[17] Niv Dayan and Stratos Idreos. “The Log-Structured

Merge-Bush & the Wacky Continuum”. In: Proceed-

ings of the 2019 International Conference on Manage-

ment of Data (SIGMOD’19). 2019, pp. 449–466.

[18] Giuseppe DeCandia et al. “Dynamo: amazon’s highly

available key-value store”. In: Proceedings of the 21st

ACM Symposium on Operating Systems Principles

(SOSP’07). 2007, pp. 205–220.

[19] Sarang Dharmapurikar, Praveen Krishnamurthy, and

David E. Taylor. “Longest prefix matching using bloom

filters”. In: Proceedings of the ACM SIGCOMM 2003

Conference on Applications, Technologies, Architec-

tures, and Protocols for Computer Communication

(SIGCOMM’03). 2003, pp. 201–212.

[20] Facebook. RocksDB. URL: https://github.com/

facebook/rocksdb (visited on 06/11/2020).

[21] Facebook. RocksDB Tuning Guide. URL: https://

github.com/facebook/rocksdb/wiki/RocksDB-

Tuning-Guide (visited on 07/12/2020).

[22] Bin Fan, Dave G. Andersen, Michael Kaminsky, and

Michael D. Mitzenmacher. “Cuckoo Filter: Practically

Better Than Bloom”. In: Proceedings of the 10th ACM

International on Conference on Emerging Networking

Experiments and Technologies (CoNEXT’14). 2014,

pp. 75–88.

[23] G. E. Forsythe. “Algorithms”. In: Commun. ACM 7.6

(1964), pp. 347–349.

[24] Eran Gilad et al. “EvenDB: optimizing key-value

storage for spatial locality”. In: Proceedings of the Fif-

teenth EuroSys Conference 2020 (EuroSys’20). 2020,

27:1–27:16.

[25] Anil K. Goel et al. “Towards Scalable Real-Time

Analytics: An Architecture for Scale-out of OLxP

Workloads”. In: Proc. VLDB Endow. 8.12 (2015),

pp. 1716–1727.

[26] Google. LevelDB. URL: https : / / github . com /

google/leveldb (visited on 05/03/2019).

http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/google/leveldb
https://github.com/google/leveldb

[27] Laura M. Grupp et al. “Characterizing flash memory:

anomalies, observations, and applications”. In: 42st

Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO 42). 2009, pp. 24–33.

[28] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. “The Unwritten Con-

tract of Solid State Drives”. In: Proceedings of the

Twelfth European Conference on Computer Systems

(EuroSys’17). 2017, pp. 127–144.

[29] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and

Beomseok Nam. “Endurable Transient Inconsistency

in Byte-Addressable Persistent B+-Tree”. In: Proceed-

ings of the 16th USENIX Conference on File and

Storage Technologies (FAST’18). 2018, pp. 187–200.

[30] Frank K. Hwang and Shen Lin. “A simple algorithm

for merging two disjoint linearly ordered sets”. In:

SIAM Journal on Computing 1.1 (1972), pp. 31–39.

[31] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,

Sam H. Noh, and Young-ri Choi. “SLM-DB: Single-

Level Key-Value Store with Persistent Memory”. In:

17th USENIX Conference on File and Storage Tech-

nologies (FAST’19). 2019, pp. 191–205.

[32] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. “Redesigning LSMs for Nonvolatile Memory

with NoveLSM”. In: 2018 USENIX Annual Technical

Conference (USENIX ATC 2018). 2018, pp. 993–1005.

[33] Donald Ervin Knuth. The Art of Computer Program-

ming, Volume 3: (2nd Ed.) Sorting and Searching.

Addison-Wesley, 1998.

[34] Avinash Lakshman and Prashant Malik. “Cassandra: a

decentralized structured storage system”. In: Operating

Systems Review 44.2 (2010), pp. 35–40.

[35] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy

Zwaenepoel. “KVell: the design and implementation

of a fast persistent key-value store”. In: Proceedings

of the 27th ACM Symposium on Operating Systems

Principles (SOSP’19). 2019, pp. 447–461.

[36] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. “WiscKey: Separating Keys from Values in

SSD-conscious Storage”. In: 14th USENIX Conference

on File and Storage Technologies (FAST’16). 2016,

pp. 133–148.

[37] Siqiang Luo et al. “Rosetta: A Robust Space-Time

Optimized Range Filter for Key-Value Stores”. In:

Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data (SIGMOD’20).

2020, pp. 2071–2086.

[38] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick,

and Elizabeth J. O’Neil. “The Log-Structured Merge-

Tree (LSM-Tree)”. In: Acta Informatica 33.4 (1996),

pp. 351–385.

[39] Michael A. Olson, Keith Bostic, and Margo I. Seltzer.

“Berkeley DB”. In: Proceedings of the FREENIX Track:

1999 USENIX Annual Technical Conference. 1999,

pp. 183–191.

[40] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,

and Ittai Abraham. “PebblesDB: Building Key-Value

Stores using Fragmented Log-Structured Merge Trees”.

In: Proceedings of the 26th Symposium on Operating

Systems Principles (SOSP’17). 2017, pp. 497–514.

[41] Pandian Raju et al. “mLSM: Making Authenticated

Storage Faster in Ethereum”. In: 10th USENIX Work-

shop on Hot Topics in Storage and File Systems

(HotStorage’18). 2018.

[42] ScyllaDB. ScyllaDB. URL: https://github.com/

scylladb/scylla (visited on 09/01/2020).

[43] UT Systems and Storage Lab. PebblesDB. URL: https:

//github.com/utsaslab/pebblesdb (visited on

08/03/2019).

[44] Tokutec Inc. TokuDB. URL: http://www.tokutek.

com (visited on 09/01/2020).

[45] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-

Dusseau. “Towards an Unwritten Contract of Intel

Optane SSD”. In: 11th USENIX Workshop on Hot

Topics in Storage and File Systems (HotStorage’19).

2019.

[46] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang.

“LSM-trie: An LSM-tree-based Ultra-Large Key-Value

Store for Small Data”. In: 2015 USENIX Annual

Technical Conference (USENIX ATC 2015). 2015,

pp. 71–82.

[47] Juncheng Yang, Yao Yue, and K. V. Rashmi. “A large

scale analysis of hundreds of in-memory cache clusters

at Twitter”. In: 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’20). 2020,

pp. 191–208.

[48] Ting Yao et al. “MatrixKV: Reducing Write Stalls and

Write Amplification in LSM-tree Based KV Stores

with Matrix Container in NVM”. In: 2020 USENIX

Annual Technical Conference (USENIX ATC 2020).

2020, pp. 17–31.

[49] Huanchen Zhang et al. “SuRF: Practical Range Query

Filtering with Fast Succinct Tries”. In: Proceedings of

the 2018 International Conference on Management of

Data, (SIGMOD’18). 2018, pp. 323–336.

https://github.com/scylladb/scylla
https://github.com/scylladb/scylla
https://github.com/utsaslab/pebblesdb
https://github.com/utsaslab/pebblesdb
http://www.tokutek.com
http://www.tokutek.com

	Introduction
	Background
	REMIX
	The REMIX Data Structure
	Efficient Search in a Segment
	Search Efficiency
	REMIX Storage Cost

	RemixDB
	The Structures of RemixDB Files
	Compaction
	Rebuilding REMIXes

	Evaluation
	Performance of REMIX-indexed Tables
	Performance of RemixDB

	Related Work
	Conclusion

